Objective: We have recently shown that terminal sialic acid residues are essential for alpha(1)-acid glycoprotein (AGP)-induced Ca(2+) mobilization in neutrophils. The aim of the present study was to establish the importance of sialic acid residues on AGP in modulating human neutrophil functions, with emphasis on the generation of reactive oxygen species (ROS).

Materials And Methods: ROS were measured by luminol-enhanced chemiluminescence in isolated human neutrophils.

Results: We found that AGP did not provoke ROS generation in resting or L-selectin presensitized neutrophils. Moreover, AGP did not affect the N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced ROS generation, but it slightly suppressed opsonized zymosan-induced responses. However, when the neutrophils were prestimulated with fMLP, the subsequent addition of AGP provoked a marked ROS response. Dose-response studies and time studies revealed that the ROS generating capacity of AGP was highest at a concentration of 0.05 mg/ml and when given 3-10 min after addition of fMLP. A desialylated form of AGP or pretreatment of neutrophils with 3'- and 6'-sialyllactose caused a substantially lower ROS response in neutrophils prestimulated with fMLP.

Conclusions: Our data show that AGP can stimulate a second ROS response in fMLP preactivated neutrophils and that terminal sialic acid residues on AGP play a crucial role in this regard.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00011-009-0071-1DOI Listing

Publication Analysis

Top Keywords

sialic acid
16
acid residues
16
ros response
12
alpha1-acid glycoprotein
8
glycoprotein agp-induced
8
generation reactive
8
reactive oxygen
8
oxygen species
8
terminal sialic
8
agp
8

Similar Publications

GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding.

Nat Commun

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.

The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.

View Article and Find Full Text PDF

Protein-protein interactions in the cell membrane are typically mediated by glycans, with terminal sialic acid often involved in these interactions. To probe the nature of the interactions, we developed quantitative cross-linking methods involving the glycans of the glycoproteins and the polypeptide moieties of proteins. We designed and synthesized biotinylated enrichable cross-linkers that were click-tagged to metabolically incorporate azido-sialic acid on cell surface glycans to allow cross-linking of the azido-glycans with lysine residues on proximal polypeptides.

View Article and Find Full Text PDF

Influenza A and B viruses represent significant global health threats, contributing substantially to morbidity and mortality rates. However, a comprehensive understanding of the molecular epidemiology of these viruses in Brazil, a continental-size country and a crucial hub for the entry, circulation, and dissemination of influenza viruses within South America, still needs to be improved. This study addresses this gap by consolidating data and samples across all Brazilian macroregions, as part of the Center for Viral Surveillance and Serological Assessment project, together with an extensive number of other Brazilian sequences provided by a public database during the epidemic seasons spanning 2021-23.

View Article and Find Full Text PDF

Advanced cancer patients face a high risk of sepsis due to immune suppression and infection susceptibility. To tackle this challenge, we developed an innovative animal model that simulates the clinical scenario of late-stage cancer complicated by sepsis and designed a sialic acid (SA)-modified paclitaxel (PTX) liposome (PTX-SAL). This formulation specifically targets overactivated peripheral blood neutrophils (PBNs) by binding to L-selectin on their surface.

View Article and Find Full Text PDF

SLC35A2 modulates paramyxovirus fusion events during infection.

PLoS Pathog

January 2025

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America.

Paramyxoviruses are significant human and animal pathogens that include mumps virus (MuV), Newcastle disease virus (NDV) and the murine parainfluenza virus Sendai (SeV). Despite their importance, few host factors implicated in paramyxovirus infection are known. Using a recombinant SeV expressing destabilized eGFP (rSeVCdseGFP) in a loss-of-function CRISPR screen, we identified the CMP-sialic acid transporter (CST) gene SLC35A1 and the UDP-galactose transporter (UGT) gene SLC35A2 as essential for paramyxovirus infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!