The first transcriptomes, expressed sequence tags (ESTs) in a leaf and root from Withania somnifera plant referenced in this report are the first of its kind. A cDNA library was constructed from samples of the 2-months-old, in vitro cultured leaves and roots, which generated 1,047 leaf cDNA and 1,034 root cDNA clones representing 48.5% and 61.5% unique sequences. The ESTs from leaf and root grouped into 239 and 230 clusters representing 22.8% and 22.2% of total sequences. Of these, about 70% encoded proteins found similar (E-value > or =10(-14)) to characterized or annotated proteins from the NCBI non-redundant database and diverse molecular functions and biological processes based on gene ontology (GO) classification. We identified genes with potential role in photosynthesis (cytochrome p-450), pathogenesis (arginine decarboxylase, chitinase) and withanolide biosynthesis (squalene epoxidase, CDP-ME kinase). Highly expressed transcripts, with a particularly high abundance of cytochrome p-450 (0.85% in leaf) were noticed. Pfam analysis revealed the presence of functional domains in selected sequences. W. somnifera is a source of multifarious and beneficial alkaloids referred as withanolides. High levels of withanolides accumulate in mature leaves and roots. Since, the knowledge for synthesis and presence of some of these important biochemical constituent is limited, identification of the genes involved in two different pathways of secondary metabolite synthesis (MVA and MEP), in different tissue will be requisite for articulation of withanolide biosynthesis. This investigation aimed at elucidating the differential gene expression in two vital sites where withanolides essentially found and leaf and root transcriptomes were comparatively analyzed. The comparative analysis of the sequences provides a framework for future research in proteomics and evolutionary genomics in the withanolide biosynthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-009-9696-yDOI Listing

Publication Analysis

Top Keywords

leaf root
16
withanolide biosynthesis
12
expressed sequence
8
sequence tags
8
root withania
8
withania somnifera
8
ests leaf
8
leaves roots
8
cytochrome p-450
8
leaf
6

Similar Publications

Water scarcity is a foremost environmental concern and is expected to hasten in the forthcoming years due to severe fluctuations in weather patterns worldwide. The present work was designed to explore the potential role of alpha-tocopherol (α-Toc), a form of vitamin E, on the morphological, physio-biochemical, and cellular antioxidant responses of two radish genotypes grown under drought conditions (38 ± 3% of field capacity). The individual and combined applications of α-Toc (100 ppm) were used as T0- Control, T1- Control + TF (TF-alpha-tocopherol), T2- Drought (D), and T3- D + TF with three replications.

View Article and Find Full Text PDF

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.

View Article and Find Full Text PDF

Poplar transformation with variable explant sources to maximize transformation efficiency.

Sci Rep

January 2025

Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

For decades, Agrobacterium tumefaciens-mediated plant transformation has played an integral role in advancing fundamental and applied plant biology. The recent omnipresent emergence of synthetic biology, which relies on plant transformation to manipulate plant DNA and gene expression for novel product biosynthesis, has further propelled basic as well as applied interests in plant transformation technologies. The strong demand for a faster design-build-test-learn cycle, the essence of synthetic biology, is, however, still ill-matched with the long-standing issues of high tissue culture recalcitrance and low transformation efficiency of a wide range of plant species especially food, fiber and energy crops.

View Article and Find Full Text PDF

Excessive copper induces lignin biosynthesis in the leaves and roots of two citrus species: Physiological, metabolomic and anatomical aspects.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:

Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!