This paper reports a new phenomenon connected with the influence of green light (GL) on biological systems. Our experiments have revealed an antioxidant effect of GL on cells subjected to lethal doses of UV at the cellular level and a protective effect of GL on DNA denatured by UV, coupled with a structural modification of DNA macromolecules under GL irradiation, at the molecular level. Mouse melanocyte cultures are subjected to UV irradiations with L(50) fluxes of 16.0 J m(-2) s(-1). GL is obtained from a strontium aluminate pigment, which emits GL under UV activation. Cells grown in GL, prior to UV irradiation, present a clear surprising protective effect with surviving values close to the controls. A GL antioxidant effect is suggested to be mediated through GL influence on cellular water cluster dynamics. To test this hypothesis, reactive oxygen species (ROS) are determined in cell cultures. The results revealed a decrease of cellular ROS generation in the UV-irradiated samples protected by a previous 24 h of GL irradiation. At the DNA level, the same type of GL protection against UV damage is recorded by gel electrophoresis and by UV spectroscopy of the irradiated DNA molecules. Two physical methods, impedance spectroscopy and chronoamperometry, have revealed at the level of GL-irradiated DNA molecules spectral modifications that correlate with the UV spectroscopy results. The interaction between the chargeless photons and the field of water molecules from the cellular compartments is discussed in relation with the new field of macroscopic quantum coherence phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2710461 | PMC |
http://dx.doi.org/10.1007/s10867-009-9164-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!