Modeling complex biological macromolecules: reduction of multibead models.

J Biol Phys

Physical Chemistry, Institute of Chemistry, University of Graz, 8010 Graz, Austria.

Published: December 2007

The shape of simple and complex biological macromolecules can be approximated by bead modeling procedures. Such approaches are required, for example, for the analysis of the scattering and hydrodynamic behavior of the models under analysis and the prediction of their molecular properties. Using the atomic coordinates of proteins for modeling inevitably leads to models composed of a multitude of beads. In particular, for hydrodynamic modeling, a drastic reduction of the bead number may become unavoidable to enable computation. A systematic investigation of different approaches and computation modes shows that the 'running mean', 'cubic grid,' and 'hexagonal grid' approaches are successful, provided that the extent of reduction does not exceed a factor of 100 and the grid approaches use beads of unequal size and the beads are located at the centers of gravity. Further precautions to be taken include usage of appropriate interaction tensors for overlapping beads of unequal size and appropriate volume corrections when calculating intrinsic viscosities. The applied procedures were tested with the small protein lysozyme in a case study and were then applied to the huge capsid of the phage fr and its trimeric building block. The appearance of the models and the agreement of molecular properties and distance distribution functions of unreduced and reduced models can be used as evaluation criteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2565767PMC
http://dx.doi.org/10.1007/s10867-008-9063-6DOI Listing

Publication Analysis

Top Keywords

complex biological
8
biological macromolecules
8
molecular properties
8
beads unequal
8
unequal size
8
models
5
modeling
4
modeling complex
4
macromolecules reduction
4
reduction multibead
4

Similar Publications

Background: The Immunoglobulin Heavy Chain (IGH) genomic region is responsible for the production of circulating antibodies and warrants careful investigation for its association with COVID-19 characteristics. Multiple allelic variants within and across different IGH gene segments form a limited set of haplotypes. Previous studies have shown associations between some of these haplotypes and clinical outcomes of COVID-19.

View Article and Find Full Text PDF

Multiomics unravels the complexity of male obesity: a prospective observational study.

J Transl Med

January 2025

Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.

Background: Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach.

Methods: Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed.

View Article and Find Full Text PDF

Background: Virus infection and herbivory can alter the expression of stress-responsive genes in plants. This study employed high-throughput transcriptomic and alternative splicing analysis to understand the separate and combined impacts on host gene expression in Arabidopsis thaliana by Myzus persicae (green peach aphid), and turnip mosaic virus (TuMV).

Results: By investigating changes in transcript abundance, the data shows that aphids feeding on virus infected plants intensify the number of differentially expressed stress responsive genes compared to challenge by individual stressors.

View Article and Find Full Text PDF

Identifying Safeguards Disabled by Epstein-Barr Virus Infections in Genomes From Patients With Breast Cancer: Chromosomal Bioinformatics Analysis.

JMIRx Med

January 2025

Department of Biochemistry and Medical Genetics, Cancer Center, University of Illinois Chicago, 900 s Ashland, Chicago, IL, 60617, United States, 1 8479124216.

Background: The causes of breast cancer are poorly understood. A potential risk factor is Epstein-Barr virus (EBV), a lifelong infection nearly everyone acquires. EBV-transformed human mammary cells accelerate breast cancer when transplanted into immunosuppressed mice, but the virus can disappear as malignant cells reproduce.

View Article and Find Full Text PDF

Nanostructured devices have proven useful in a broad range of applications, from diagnosing diseases to discovering and screening new drug molecules. We developed vertical silicon nanopillar (SiNP) arrays for on-chip multiplex capture of selected biomolecules using a light-induced release of the array's selectively captured biomarkers. This platform allows the rapid, reusable and quantitative capture and release of a selection of biomarkers, followed by their downstream analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!