Aurora kinase A, also known as aurora A, is a serine/threonine kinase that plays critical roles in mitosis entry, chromosome alignment, segregation, and cytokinesis. Overexpression of aurora A has been observed in many solid tumors and some hematopoietic neoplasms, but little is known about its expression in myeloid diseases. Because cytogenetic abnormalities play an essential role in the pathogenesis of myeloid malignancies, we hypothesized that aurora A deregulation may be involved in myelodysplastic syndromes and acute myeloid leukemia and contribute to the chromosomal instability observed in these diseases. We assessed aurora A mRNA levels in CD34(+) bone marrow blasts from nine patients with acute myeloid leukemia, 20 patients with myelodysplastic syndromes, and five normal patients serving as controls. CD34(+) blasts were isolated from bone marrow aspirate specimens using magnetic activated cell separation technology. RNA was extracted from purified CD34(+) cells, and quantitative real-time reverse transcriptase polymerase chain reaction for aurora A was performed. Immunocytochemical analyses for total aurora A, phosphorylated aurora A, Ki-67, and activated caspase 3 were performed on cytospin slides made from purified CD34(+) cells in myelodysplastic syndrome patients using standard methods. Aurora A mRNA and protein levels were correlated, as was aurora A mRNA level, with blast counts, cytogenetic abnormalities, and International Prognostic Scoring System score. We found that CD34(+) cells in myelodysplastic syndromes and acute myeloid leukemia expressed aurora A at significantly higher levels (P = 0.01 and P = 0.01, respectively) than normal CD34(+) cells. Aurora A mRNA levels correlated with total and phosphorylated protein levels (P = 0.0002 and P = 0.02, respectively). No significant correlation was found between aurora A mRNA level and blast count, blast viability, cytogenetic abnormalities, or the International Prognostic Scoring System score in patients with myelodysplastic syndromes. We conclude that aurora A is up-regulated in CD34(+) blasts from myeloid neoplasms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713495 | PMC |
http://dx.doi.org/10.1007/s12308-008-0019-3 | DOI Listing |
Haematologica
January 2025
Division of Hematology, Mayo Clinic, Rochester, Minnesota.
Not available.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Epigenetic regulation in hematopoietic stem cells (HSCs) research has emerged as a transformative molecular approach that enhances understanding of hematopoiesis and hematological disorders. This chapter investigates the intricate epigenetic mechanisms that control HSCs function, including deoxyribonucleic acid (DNA) methylation, histone modifications, and chromatin remodeling. It also explores the role of non-coding ribonucleic acid (RNAs) as epigenetic regulators, highlighting how changes in gene expression can occur without alterations to the DNA sequence.
View Article and Find Full Text PDFAnn Hematol
January 2025
Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, 3-18-22 Honkomagome, Bunkyo-Ku, Tokyo, 113-8677, Japan.
Donor cell leukemia (DCL), in which malignancy evolves from donor's stem cells, is an infrequent complication of allogeneic hematopoietic stem cell transplantation. Acute promyelocytic leukemia (APL) derived from donor cell is extremely rare and only four cases have been reported to date. Herein we report a case of donor cell-derived APL developing 32 months after haploidentical peripheral blood stem cell transplantation using posttransplant cyclophosphamide for myelodysplastic syndromes.
View Article and Find Full Text PDFMyelodysplastic syndromes (MDS) are age-related diseases characterized by bone marrow (BM) dysfunction and an increased risk of developing acute leukemia. While there is growing evidence highlighting the crucial role of the BM microenvironment (BMME) in MDS, the specific influence of inflammation on BMME changes, as well as the potential benefits of targeting cytokines therapeutically, remain to be elucidated. We previously found interleukin-1 (IL-1) to be a driver of aging phenotypes of BMME and hematopoietic stem and progenitor cells (HSPCs).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland.
Background: Paroxysmal nocturnal hemoglobinuria (PNH) is a rare complement-driven acquired hemolytic anemia with specific presentations of hemoglobinuria, abdominal pain, fatigue, and thrombosis.
Objective: To review the current therapeutic strategies for PNH, including anti-complement therapy and allogeneic hematopoietic cell transplantation (alloHCT), focusing on the tailoring of the approach to the disease subtype.
Results: The outcome of alloHCT varies depending on disease severity, thrombotic history, and response to prior therapies.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!