Role of the sympathetic nervous system in Schlager genetically hypertensive mice.

Hypertension

Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, 75 Commercial Road, Melbourne, St Kilda Road Central, Melbourne, Victoria 8008, Australia.

Published: October 2009

Early studies indicate that the hypertension observed in the Schlager inbred mouse strain may be attributed to a neurogenic mechanism. In this study, we examined the contribution of the sympathetic nervous system in maintaining hypertension in the BPH/2J mouse and used c-Fos immunohistochemistry to elucidate whether neuronal activation in specific brain regions was associated with waking blood pressure. Male hypertensive (BPH/2J; n=14), normotensive (BPN/3J; n=18), and C57/Bl6 (n=5) mice were implanted with telemetry devices, and after 10 days of recovery, recordings of blood pressure, heart rate, and locomotor activity were measured to determine circadian variation. Mean arterial pressure was higher in BPH/2J than in BPN/3J or C57/Bl6 mice (P<0.001), and BPH/2J animals showed exaggerated day-night differences (17+/-2 versus 6+/-1 mm Hg in BPN/3J or +8+/-2 mm Hg in C57/Bl6 mice; P<0.001). Acute sympathetic blockade with pentolinium (7.5 mg/kg IP) during the active and inactive phases reduced blood pressure to comparable levels in BPH/2J and BPN/3J mice. The number of c-Fos-labeled cells was greater in the amygdala (+180%; P<0.01), paraventricular nucleus (+110%; P<0.001), and dorsomedial hypothalamus (+48%; P<0.001) in the active (hypertensive) phase in BPH/2J compared with BPN/3J mice. The level of neuronal activation was mostly similar in these regions in the inactive phase. Of all of the regions studied, neuronal activation in the medial amygdala, as detected by c-Fos, was highly correlated to mean arterial pressure (r=0.98). These findings indicate that the hypertension is largely attributable to sympathetic nervous system activity, possibly generated through greater levels of arousal regulated by neurons located in the medial amygdala.

Download full-text PDF

Source
http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.136069DOI Listing

Publication Analysis

Top Keywords

sympathetic nervous
8
nervous system
8
blood pressure
8
role sympathetic
4
system schlager
4
schlager genetically
4
genetically hypertensive
4
hypertensive mice
4
mice early
4
early studies
4

Similar Publications

Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.

View Article and Find Full Text PDF

Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.

Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.

View Article and Find Full Text PDF

Molecular regulatory effect of the ergot alkaloid methylergometrine on the α3β4 nicotinic acetylcholine receptor.

Biochem Biophys Res Commun

December 2024

Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea. Electronic address:

Methylergometrine has widely been used pharmacologically to treat conditions such as pain, addiction, vasoconstriction, migraines, and Parkinson's disease. Despite its side effects, it is used as a therapeutic agent and research material for various diseases based on its natural potential; however, the regulatory effect of its interaction with the nicotinic acetylcholine receptor (nAChR) has not yet been investigated. The α3β4 nAChR is an ion channel essential for neurotransmission within the sympathetic, parasympathetic, and autonomic nervous systems.

View Article and Find Full Text PDF

External trigeminal nerve stimulation (eTNS) Exhibits relaxation effects in fatigue states following napping deprivation.

Neuroscience

December 2024

Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China. Electronic address:

Background: In the face of inevitable declines in alertness and fatigue resulting from sleep deprivation, effective countermeasures are essential for maintaining performance. External trigeminal nerve stimulation (eTNS) presents a potential avenue for regulating alertness by activating the locus coeruleus and reticular activating system.

Methods: Here, we conducted a within-subject study with 66 habitual nappers, subjecting them to afternoon nap-deprivation and applying either 20-minute of 120 Hz eTNS or sham stimulation.

View Article and Find Full Text PDF

The brain is highly innervated by sympathetic nerve fibres; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO) administration (+8 Torr)], independently, and in combination. Twelve young and healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!