Early studies indicate that the hypertension observed in the Schlager inbred mouse strain may be attributed to a neurogenic mechanism. In this study, we examined the contribution of the sympathetic nervous system in maintaining hypertension in the BPH/2J mouse and used c-Fos immunohistochemistry to elucidate whether neuronal activation in specific brain regions was associated with waking blood pressure. Male hypertensive (BPH/2J; n=14), normotensive (BPN/3J; n=18), and C57/Bl6 (n=5) mice were implanted with telemetry devices, and after 10 days of recovery, recordings of blood pressure, heart rate, and locomotor activity were measured to determine circadian variation. Mean arterial pressure was higher in BPH/2J than in BPN/3J or C57/Bl6 mice (P<0.001), and BPH/2J animals showed exaggerated day-night differences (17+/-2 versus 6+/-1 mm Hg in BPN/3J or +8+/-2 mm Hg in C57/Bl6 mice; P<0.001). Acute sympathetic blockade with pentolinium (7.5 mg/kg IP) during the active and inactive phases reduced blood pressure to comparable levels in BPH/2J and BPN/3J mice. The number of c-Fos-labeled cells was greater in the amygdala (+180%; P<0.01), paraventricular nucleus (+110%; P<0.001), and dorsomedial hypothalamus (+48%; P<0.001) in the active (hypertensive) phase in BPH/2J compared with BPN/3J mice. The level of neuronal activation was mostly similar in these regions in the inactive phase. Of all of the regions studied, neuronal activation in the medial amygdala, as detected by c-Fos, was highly correlated to mean arterial pressure (r=0.98). These findings indicate that the hypertension is largely attributable to sympathetic nervous system activity, possibly generated through greater levels of arousal regulated by neurons located in the medial amygdala.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.136069 | DOI Listing |
Physiol Rep
December 2024
Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan.
Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Department of Clinical Neurophysiology, Vall d'Hebron University Hospital, Passeig de la Vall d'Hebron, 119, 08035 Barcelona, Spain. Electronic address:
Introduction/objective: Biallelic expansion of the pentanucleotide AAGGG in the RFC1- gene is associated with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS). This study aimed to comprehensively characterise this condition by conducting an in-depth neurophysiological examination of afflicted patients.
Methods: A retrospective analysis was conducted in 31 RFC1-positive patients.
Biochem Biophys Res Commun
December 2024
Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea. Electronic address:
Methylergometrine has widely been used pharmacologically to treat conditions such as pain, addiction, vasoconstriction, migraines, and Parkinson's disease. Despite its side effects, it is used as a therapeutic agent and research material for various diseases based on its natural potential; however, the regulatory effect of its interaction with the nicotinic acetylcholine receptor (nAChR) has not yet been investigated. The α3β4 nAChR is an ion channel essential for neurotransmission within the sympathetic, parasympathetic, and autonomic nervous systems.
View Article and Find Full Text PDFNeuroscience
December 2024
Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China; Intelligent Non-invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Guangzhou Institute of Technology, Xidian University, Xi'an, Shaanxi, China. Electronic address:
Background: In the face of inevitable declines in alertness and fatigue resulting from sleep deprivation, effective countermeasures are essential for maintaining performance. External trigeminal nerve stimulation (eTNS) presents a potential avenue for regulating alertness by activating the locus coeruleus and reticular activating system.
Methods: Here, we conducted a within-subject study with 66 habitual nappers, subjecting them to afternoon nap-deprivation and applying either 20-minute of 120 Hz eTNS or sham stimulation.
J Appl Physiol (1985)
December 2024
Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
The brain is highly innervated by sympathetic nerve fibres; however, their physiological purpose is poorly understood. We hypothesized that unilateral cerebral norepinephrine (NE) spillover, an index of cerebral sympathetic nerve activity (SNA), would be elevated when engaging the baroreflex [via lower-body negative pressure (LBNP; -20 and -40 Torr)] and respiratory chemoreflexes [via carbon dioxide (CO) administration (+8 Torr)], independently, and in combination. Twelve young and healthy participants (5 females) underwent simultaneous blood sampling from the right radial artery and internal jugular vein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!