Folates are essential for nucleic acid synthesis and are particularly required in rapidly proliferating tissues, such as intestinal epithelium and hemopoietic cells. Availability of dietary folates is determined by their absorption across the intestinal epithelium, mediated by the proton-coupled folate transporter (PCFT) at the apical enterocyte membranes. Whereas transport properties of PCFT are well characterized, regulation of PCFT gene expression remains less elucidated. We have studied the mechanisms that regulate PCFT promoter activity and expression in intestine-derived cells. PCFT mRNA levels are increased in Caco-2 cells treated with 1,25-dihydroxyvitamin D(3) (vitamin D(3)) in a dose-dependent fashion, and the duodenal rat Pcft mRNA expression is induced by vitamin D(3) ex vivo. The PCFT promoter region is transactivated by the vitamin D receptor (VDR) and its heterodimeric partner retinoid X receptor-alpha (RXRalpha) in the presence of vitamin D(3). In silico analyses predicted a VDR response element (VDRE) in the PCFT promoter region -1694/-1680. DNA binding assays showed direct and specific binding of the VDR:RXRalpha heterodimer to the PCFT(-1694/-1680), and chromatin immunoprecipitations verified that this interaction occurs within living cells. Mutational promoter analyses confirmed that the PCFT(-1694/-1680) motif mediates a transcriptional response to vitamin D(3). In functional support of this regulatory mechanism, treatment with vitamin D(3) significantly increased the uptake of [(3)H]folic acid into Caco-2 cells at pH 5.5. In conclusion, vitamin D(3) and VDR increase intestinal PCFT expression, resulting in enhanced cellular folate uptake. Pharmacological treatment of patients with vitamin D(3) may have the added therapeutic benefit of enhancing the intestinal absorption of folates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/mol.109.055392 | DOI Listing |
Sci Rep
March 2021
Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT.
View Article and Find Full Text PDFJ Med Genet
July 2021
Center for Precision Environmental Health, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
Cerebral folate deficiency (CFD) syndrome is characterised by a low concentration of 5-methyltetrahydrofolate in cerebrospinal fluid, while folate levels in plasma and red blood cells are in the low normal range. Mutations in several folate pathway genes, including , , and ) have been previously identified in patients with CFD. In an effort to identify causal mutations for CFD, we performed whole exome sequencing analysis on eight CFD trios and identified eight de novo mutations in seven trios.
View Article and Find Full Text PDFFASEB J
August 2020
Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
Folates are important for neurodevelopment and cognitive function. Folate transport across biological membranes is mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate transport primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems results in suboptimal folate levels in the cerebrospinal fluid (CSF) causing childhood neurological disorders.
View Article and Find Full Text PDFInt J Mol Sci
April 2020
Laboratory Medical Oncology, Amsterdam UMC, location VU University Medical Center, 1081 HV Amsterdam, The Netherlands.
(1) Background: RX-3117 (fluorocyclopentenyl-cytosine) is a cytidine analog that inhibits DNA methyltransferase 1 (DNMT1). We investigated the mechanism and potential of RX-3117 as a demethylating agent in several in vitro models. (2) Methods: we used western blotting to measure expression of several proteins known to be down-regulated by DNA methylation: O-methylguanine-DNA methyltransferase (MGMT) and the tumor-suppressor genes, p16 and E-cadherin.
View Article and Find Full Text PDFAnn Oncol
November 2017
Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands. Electronic address:
Background: Thymidylate synthase (TS) has a predictive role in pemetrexed treatment of mesothelioma; however, additional chemoresistance mechanisms are poorly understood. Here, we explored the role of the reduced-folate carrier (RFC/SLC19A1) and proton-coupled folate transporter (PCFT/SLC46A1) in antifolate resistance in mesothelioma.
Patients And Methods: PCFT, RFC and TS RNA and PCFT protein levels were determined by quantitative RT-PCR of frozen tissues and immunohistochemistry of tissue-microarrays, respectively, in two cohorts of pemetrexed-treated patients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!