AI Article Synopsis

  • - FGFRs play a crucial role in processes like cell movement, growth, and survival, and a new connection between FGFR1 and the cell adhesion molecule neurofascin has been discovered, particularly affecting neurite growth.
  • - The study found that the embryonal neurofascin isoform NF166 can interact with FGFR1, promoting neurite outgrowth, while the adult isoform NF186 cannot due to structural differences.
  • - The activation of FGFR1 by neurofascin depends mainly on its cytosolic domain, where specific serine residues are key for promoting neurite outgrowth, indicating different roles for the protein’s extracellular and intracellular regions during development.

Article Abstract

Fibroblast growth factor receptors (FGFRs) are important for many different mechanisms, including cell migration, proliferation, differentiation, and survival. Here, we show a new link between FGFR1 and the cell adhesion molecule neurofascin, which is important for neurite outgrowth. After overexpression in HEK293 cells, embryonal neurofascin isoform NF166 was able to associate with FGFR1, whereas the adult isoform NF186, differing from NF166 in additional extracellular sequences, was deficient. Pharmacological inhibitors and overexpression of dominant negative components of the FGFR signaling pathway pointed to the activation of FGFR1 after association with neurofascin in neurite outgrowth assays in chick tectal neurons and rat PC12-E2 cells. Both extra- and intracellular domains of embryonal neurofascin isoform NF166 were able to form complexes with FGFR1 independently. However, the cytosolic domain was both necessary and sufficient for the activation of FGFR1. Cytosolic serine residues 56 and 100 were shown to be essential for the neurite outgrowth-promoting activity of neurofascin, whereas both amino acid residues were dispensable for FGFR1 association. In conclusion, the data suggest a neurofascin intracellular domain, which activates FGFR1 for neurite outgrowth, whereas the extracellular domain functions as an additional, regulatory FGFR1 interaction domain in the course of development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781396PMC
http://dx.doi.org/10.1074/jbc.M109.004440DOI Listing

Publication Analysis

Top Keywords

neurite outgrowth
12
fgfr1
9
fibroblast growth
8
growth factor
8
fgfr1 interaction
8
neurofascin neurite
8
embryonal neurofascin
8
neurofascin isoform
8
isoform nf166
8
activation fgfr1
8

Similar Publications

Autism spectrum disorder (ASD) is linked to ion channel dysfunction, including chloride voltage-gated channel-4 (CLCN4). We generated Clcn4 knockout (KO) mice by deleting exon 5 of chromosome 7 in the C57BL/6 mice. Clcn4 KO exhibited reduced social interaction and increased repetitive behaviors assessed using three-chamber and marble burying tests.

View Article and Find Full Text PDF

After spinal cord injury (SCI), reactive astrocytes in the injured area are triggered after spinal cord injury (SCI) and to polarize into A1 astrocytes with a proinflammatory phenotype or A2 astrocytes with an anti-inflammatory phenotype. Monopolar spindle binder 2 (MOB2) induces astrocyte stellation, maintains cell homeostasis, and promotes neurite outgrowth; however, its role in the phenotypic transformation of reactive astrocytes remains unclear. Here, we confirmed for the first time that MOB2 is associated with A1/A2 phenotypic switching in reactive astrocytes following SCI in mice.

View Article and Find Full Text PDF

Background/objectives: α-Synuclein (α-syn) protein is a major pathological agent of familial Parkinson's disease (PD), and its levels and aggregations determine neurotoxicity in PD pathogenesis. Although the pathophysiological functions of α-syn have been extensively studied, its biological functions remain elusive, and there are reports of wild-type (WT) α-syn and two missense mutations of α-syn (A30P and A53T) inducing protective neuritogenesis through neurite outgrowth. However, the function of another α-syn mutation, E46K, has not been fully elucidated.

View Article and Find Full Text PDF

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Front Cell Dev Biol

January 2025

Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.

View Article and Find Full Text PDF

Transcriptomic Signatures of Cold Acclimated Adipocytes Reveal CXCL12 as a Brown Autocrine and Paracrine Chemokine.

Mol Metab

January 2025

Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!