A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Approaching intelligent infection diagnostics: Carbon fibre sensor for electrochemical pyocyanin detection. | LitMetric

Pyocyanin is produced by Ps. aeruginosa as a result of quorum sensing during wound colonisation increasing bacterial virulence and damaging host physiology, both of which contribute to an increased risk of infection. The use of carbon fibre tow as an electrochemical sensing matrix for assessing pyocyanin production is evaluated. Prototype sensor assemblies have been developed and response characteristics towards pyocyanin are detailed. The sensitive and linear quantification of pyocyanin is presented (r(2)=0.998) across the biomedically relevant concentration range (1-100 microM). Precise electrochemical measurements of pyocyanin by square wave voltammetry are established using carbon fibre assemblies (coefficient of variance=1.2 and 1.4% for 10 and 50 microM pyocyanin, respectively). Further testing of the sensors in bacterial cultures shows the ability to monitor pyocyanin production by Ps. aeruginosa in agreement with the chloroform-acid/photometric method and in the presence of other bacterially derived pigments and metabolites. The proposed small and inexpensive sensor assembly is suggested for use in monitoring Ps. aeruginosa growth.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2009.07.008DOI Listing

Publication Analysis

Top Keywords

carbon fibre
12
pyocyanin
8
pyocyanin production
8
approaching intelligent
4
intelligent infection
4
infection diagnostics
4
diagnostics carbon
4
fibre sensor
4
sensor electrochemical
4
electrochemical pyocyanin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!