Suspended solids and siltation are among the most prevalent problems in streams and rivers of the world; however, because they are often associated with other stresses such as increased nutrient concentrations or changes in channel form, their impacts on the biota and on ecosystem functioning are not fully understood. To assess the effects of pulse sediment deposition on periphyton, we applied an exponential gradient of clay concentration (from 0 to 54.7 g L(-1)) for three days to eleven artificial indoor channels precolonized by algae (three controls+eight treatments). This resulted in a gradient of inorganic particulate matter in the bottom from two to over 200 gm(-2). Periphytic biomass, photosynthetic activity and algal communities were studied during the following four weeks. High sediment loads (>6 g L(-1)) initially reduced algal growth but by the end of the experiment periphytic biomass was similar in all channels. Under high sediment load, algal photosynthetic efficiency showed a quick decrease after three days of exposure, followed by a delayed increase in chlorophyll a contents. After two weeks signs of adaptation were observed, first as an increase in photosynthetic efficiency and then as an increase in pigment concentration. Siltation led to changes in community structure; diatoms increased in high silt treatments although green algae still dominated. Overall, the accumulation of fine sediment affected periphytic biomass, photosynthetic activity and community composition. Periphyton adaptation reduced the initial impact, reaching almost full compensation in terms of chlorophyll a and photosynthetic activity; however, algal community composition did not recover within the time frame of this study. Thus, the frequent siltation pulses observed in many streams throughout the world may have an important impact on the periphyton, which would in turn affect stream ecosystem structure and functioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2009.06.049 | DOI Listing |
Glob Chang Biol
October 2024
Laboratório de Ecologia e Conservação de Ecossistemas, Departamento de Ecologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
Climate change often facilitates biological invasions, leading to potential interactive impacts of these global drivers on freshwater ecosystems. Although climatic mitigation efforts may reduce the magnitude of these interactive impacts, we are still missing experimental evidence for such effects under multiple climate change scenarios within a multi-trophic framework. To address this knowledge gap, we experimentally compared the independent and interactive effects of two climate change scenarios (mitigation and business-as-usual) and biological invasion on the biomass of major freshwater trophic groups (phytoplankton, zooplankton, periphyton, macroinvertebrates, and a native macrophyte) and the decomposition rate of allochthonous material.
View Article and Find Full Text PDFSci Total Environ
December 2024
Christian Doppler Laboratory for Meta Ecosystem Dynamics in Riverine Landscapes, Institute of Hydrobiology and Aquatic Ecosystem Management, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Gregor Mendel Straße 33, A-1180 Vienna, Austria; WasserCluster Lunz - Biolog. Station, Lunz am See, Dr. Carl Kupelwieser Prom. 5, A-3293 Lunz/See, Austria.
Riverine ecosystems are profoundly influenced by hydrological dynamics and natural flow regimes, which dictate the temporal variability of water levels and the amplitude of fluctuations. Human activities, particularly navigation and hydropower generation, have significantly altered these natural patterns, leading to detrimental impacts on the physical, chemical, and biological integrity of river ecosystems. The littoral zone, in particular, is highly susceptible to anthropogenic disturbances, experiencing disruptions in biological activity and biogeochemical processes.
View Article and Find Full Text PDFSci Total Environ
October 2024
Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea. Electronic address:
Marine plastic debris (MPD) is a potential threat to marine ecosystems, but its function as a vector for the transportation of harmful microalgae and its impact on the habitats of other marine organisms are uncertain. To address this gap in knowledge, we performed month-long experiments in 30 L microcosms that contained plates made of six different plastic polymers (polypropylene [PP], low-density polyethylene [LDPE], high-density polyethylene [HDPE], polyvinyl chloride [PVC], polyethylene terephthalate [PET], and polystyrene [PS]), and examined the time course of changes in planktonic and periphytic microalgae. There were no significant differences in the composition of periphytic microalgae or biomass among the different plastic polymers (p > 0.
View Article and Find Full Text PDFSci Total Environ
September 2024
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, China.
Understanding the behavior of tire wear particles (TWPs) and their impact on aquatic environments after aging is essential. This study explored the characteristics of TWPs generated using different methods (rolling friction, sliding friction, and cryogenic milling) and their transformation after exposure to environmental conditions mimicking runoff and sewage, focusing on their effects on river water and periphytic biofilms. Laboratory experiments indicate that at low exposure levels (0.
View Article and Find Full Text PDFEnviron Pollut
March 2024
State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China. Electronic address:
The widespread application of sulfonamide antibiotics in aquaculture has raised concerns about their adverse environmental impacts. Periphyton plays a crucial role in the aquatic ecosystem. In this study, we examined sulfamethoxazole (SMX) effects on the community structure and interactions of periphyton in simulated aquaculture water.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!