Effects of non-steroidal anti-inflammatory drugs on Abeta deposition in Abeta(1-42) transgenic C. elegans.

Brain Res

Department of Neuroscience, Pharmacology Research Labs, Astellas Pharma Inc., Miyukigaoka Research Center, 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan.

Published: October 2009

Although epidemiological studies have shown that long-term treatment with non-steroidal anti-inflammatory drugs (NSAIDs) may protect against Alzheimer's disease (AD), the mechanism(s) by which NSAIDs reduce the risk of AD remain to be determined. As C. elegans possess neither inflammatory cells nor the arachidonate cascade, we could evaluate the effects of NSAIDs on amyloid beta (Abeta) deposition in the absence of immune cells using Abeta-transgenic C. elegans. For this purpose, we established a strain of Abeta-transgenic C. elegans in which thioflavin S-reactive deposits are reproducibly detectable by confocal microscopy. Among the NSAIDs examined, ibuprofen and naproxen reduced the number of thioflavin S-reactive deposits. Furthermore, ibuprofen and naproxen neither affect the thioflavin S binding to Abeta nor Abeta expression in transgenic C. elegans. These data suggest that ibuprofen and naproxen, the most frequently used NSAIDs for the treatment of AD, have an inhibitory effect on Abeta deposition that is independent of the arachidonate cascade and cellular immune systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2009.08.002DOI Listing

Publication Analysis

Top Keywords

abeta deposition
12
ibuprofen naproxen
12
non-steroidal anti-inflammatory
8
anti-inflammatory drugs
8
transgenic elegans
8
arachidonate cascade
8
abeta-transgenic elegans
8
thioflavin s-reactive
8
s-reactive deposits
8
abeta
5

Similar Publications

Scope: Alzheimer's disease (AD) is the most prevalent form of dementia, lack of effective therapeutic interventions. In this study, we investigate the impact of intermittent fasting (IF), an alternative strategy of calorie restriction, on cognitive functions and AD-like pathology in a transgenic mouse model of AD.

Methods And Results: APP/PS1 mice at 6 months were randomly allocated to two dietary groups: one receiving ad libitum (AL) feeding and the other undergoing IF for 1 month.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex neurodegenerative disorder, with amyloid-beta (Aβ) aggregation playing a key role in its pathogenesis. Aβ-induced oxidative stress leads to neuronal damage, mitochondrial dysfunction, and apoptosis, making antioxidative strategies promising for AD treatment. This study investigates the effects of hydrogen-rich water (HRW) in a zebrafish AD model.

View Article and Find Full Text PDF

Bipolar disorder (BD) is a prevalent mood disorder characterized by alternating episodes of depression and mania, often accompanied by varying degrees of cognitive impairment. Cognitive impairments often serve as indicators of a bleak prognosis or the likelihood of progressing to dementia. Additionally, some studies suggest that individuals diagnosed with BD may undergo a decline in hippocampal volume.

View Article and Find Full Text PDF

Charge Modification of Lysine Mitigates Amyloid-β Aggregation.

Chembiochem

January 2025

Yonsei University, Deparment of Pharmacy, 85 Songdogwahak-ro, Yeonsu-gu, Yonsei University, Veritas Hall D411, 21983, Incheon, KOREA, REPUBLIC OF.

Alzheimer's disease (AD) is a progressive neurodegenerative condition characterized by the deposition of amyloid-β (Aβ) peptides, which aggregate into toxic structures such as oligomers, fibrils, and plaques. The presence of these Aβ aggregates in the brain plays a crucial role in the pathophysiology, leading to synaptic dysfunction and cognitive impairment. Understanding how physiological factors affect Aβ aggregation is essential, and therefore, exploring their influence in vitro will likely provide insights into their role in AD pathology.

View Article and Find Full Text PDF

Association of objective subtle cognitive difficulties with amyloid-β and tau deposition compared to subjective cognitive decline.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.

Purpose: This study evaluated the differences in amyloid-β (Aβ), tau deposition, and longitudinal tau deposition between subjective cognitive decline (SCD) and objective subtle cognitive difficulties (Obj-SCD).

Methods: Participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 234) and the Huashan cohort (n = 267) included individuals with Obj-SCD, SCD, subjective memory concern (SMC), and healthy controls (HC). General linear models (GLM) were used to compare baseline and longitudinal differences in Aβ and tau among the groups, and to examine the associations between these biomarkers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!