Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice.

J Mol Cell Cardiol

Division of Cardiology, Department of Medicine, University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, 1211 Geneva, Switzerland.

Published: April 2010

Although beneficial for cardiomyocyte salvage and to limit myocardial damage and cardiac dysfunction, restoration of blood flow after prolonged ischemia exacerbates myocardial injuries. Several deleterious processes that contribute to cardiomyocyte death have been proposed, including massive release of reactive oxygen species, calcium overload and hypercontracture development or leukocyte infiltration within the damaged myocardium. Chemokines are known to enhance leukocyte diapedesis at inflammatory sites. The aim of the present study was to investigate the effect of chemokine CCL5/RANTES antagonism in an in vivo mouse model of ischemia and reperfusion. ApoE(-/-) mice were submitted to 30 min ischemia, by ligature of the left coronary artery, followed by 24 h reperfusion. Intraperitoneal injection of 10 mug of CCL5/RANTES antagonist [(44)AANA(47)]-RANTES, 5 min prior to reperfusion, reduced infarct size as well as Troponin I serum levels compared to PBS-treated mice. This beneficial effect of [(44)AANA(47)]-RANTES treatment was associated with reduced leukocyte infiltration into the reperfused myocardium, as well as decreased chemokines Ccl2/Mcp-1 and Ccl3/Mip-1alpha expression, oxidative stress, and apoptosis. However, mice deficient for the CCL5/RANTES receptor Ccr5 did not exhibit myocardium salvage in our model of ischemia-reperfusion. Furthermore, [(44)AANA(47)]-RANTES did not mediate cardioprotection in these ApoE(-/-) Ccr5(-/-) deficient mice, probably due to enhanced expression of compensatory chemokines. This study provides the first evidence that inhibition of CCL5/RANTES exerts cardioprotective effects during early myocardial reperfusion, through its anti-inflammatory properties. Our findings indicate that blocking chemokine receptor/ligand interactions might become a novel therapeutic strategy to reduce reperfusion injuries in patients during acute coronary syndromes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2009.07.029DOI Listing

Publication Analysis

Top Keywords

chemokine ccl5/rantes
8
myocardial reperfusion
8
mice beneficial
8
leukocyte infiltration
8
reperfusion
6
mice
5
ccl5/rantes inhibition
4
inhibition reduces
4
myocardial
4
reduces myocardial
4

Similar Publications

Maternal immunisation against respiratory viruses provides protection in early life, but as antibodies wane, there can be a gap in coverage. This immunity gap might be filled by inducing pathogen-specific lung tissue-resident T cells (TRM). However, the neonatal mouse lung has a different inflammatory environment to the adult lung which affects T cell recruitment.

View Article and Find Full Text PDF

Radon (Rn) is a naturally occurring radioactive gas, ionizing radiation emitted by the radon induces oxidative stress and the up-regulation of inflammatory proteins, which may cause lung damage or cancer. However, the underlying pathogenesis remains to be determined. effector T helper cells are key in mediating the host's protection and immune homeostasis.

View Article and Find Full Text PDF

Unveiling Key Biomarkers and Mechanisms in Septic Cardiomyopathy: A Comprehensive Transcriptome Analysis.

J Inflamm Res

December 2024

Department of Internal and Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.

Purpose: Septic cardiomyopathy (SCM) is a significant global public health concern characterized by substantial morbidity and mortality, which has not been improved for decades due to lack of early diagnosis and effective therapies. This study aimed to identify hub biomarkers in SCM and explore their potential mechanisms.

Methods: We utilized the GSE53007 and GSE207363 datasets for transcriptome analysis of normal and SCM mice.

View Article and Find Full Text PDF

Interferon-ε loss is elusive 9p21 link to immune-cold tumors, resistant to immune-checkpoint therapy and endogenous CXCL9/10 induction.

J Thorac Oncol

December 2024

Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA; Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

Introduction: Copy-number (CN) loss of chromosome 9p, or parts thereof, impair immune response and confer ICT resistance by direct elimination of immune-regulatory genes on this arm, notably IFNγ genes at 9p24.1, and type-I interferon (IFN-I) genes at 9p21.3.

View Article and Find Full Text PDF

Tumor infiltration of inactive CD8 + T cells was associated with poor prognosis in Gastric Cancer.

Gastric Cancer

December 2024

Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan.

Background: Gastric cancer (GC) shows limited response to immune checkpoint inhibitors due to its complex tumor immune microenvironment (TIME). This study explores the functions of various immune cells in the complex TIME in GC.

Methods: We assessed CD8 + T-cell infiltration of GC tissues by immunohistochemistry, and performed single-cell RNA sequencing (scRNA-seq) of tumor and normal tissues from 34 patients with GC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!