Optimal feature selection for the assessment of vocal fold disorders.

Comput Biol Med

Department of Mechanical Engineering, McGill University, Quebec, Canada.

Published: October 2009

Unilateral vocal fold paralysis, vocal fold polyp, and vocal fold nodules are the most common types of neurogenic and organic vocal disorders. This article aims to distinguish these types of vocal diseases into four different classes for the purpose of automatic screening. Firstly, the reconstructed signal at each wavelet packet decomposition sub-band in five levels of decomposition with mother wavelet of (db10) is used to extract the nonlinear features of self-similarity and approximate entropy. Also, wavelet packet coefficients are used to measure energy and Shannon entropy features at different spectral sub-bands. Consequently, to find a discriminant feature vector, three different methods have been applied: Davies-Bouldin (DB) criteria, genetic algorithm (GA) with the fitness functions of support vector machine's (SVM) and k-nearest neighbor's (KNN) recognition rates. Finally, obtained feature vectors have been passed on to SVM and KNN classifiers. The results show that a feature vector of length 12 obtained by the optimization method of GA with the fitness function of SVM's recognition rate fed to SVM classifier achieves the highest classification accuracy of 91%. Furthermore, nonlinear features play an important role in pathological voice classification by participating rate of approximately 67% in the optimal feature vector.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2009.06.014DOI Listing

Publication Analysis

Top Keywords

vocal fold
16
feature vector
12
optimal feature
8
wavelet packet
8
nonlinear features
8
vocal
6
feature selection
4
selection assessment
4
assessment vocal
4
fold
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!