The basic motive to study the brain asymmetry using a dichotic paradigm, forced the authors to develop an interactive stimulus system, where not only the stimuli but also the responses could be interactively registered real time on to the EEG data. Therefore, an embedded interactive stimulation unit (EMISU) was constructed and applied in such a task, incorporating behavioral and evoked data from 20 volunteers (10 male, 10 female, 21.15 years). The results provided a significant factor of laterality in favor of right ear responses (p<0.001) and also proved the applicability of the proposed design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2009.07.001 | DOI Listing |
Cureus
November 2024
Department of Neurosurgery, Fukushima Medical University, Fukushima, JPN.
Introduction The degree to which each human brain hemisphere governs specific cognitive processes, such as language and handedness (the preference or dominance of one hand over the other), varies across individuals. Research has explored the nature of language laterality in left-handed (LH) individuals, indicating that left-hemisphere dominance for language is commonly observed across both left- and right-handed populations. Advanced imaging techniques, including functional transcranial Doppler sonography and fMRI, have revealed subtle differences in language lateralization between LH and right-handed (RH) individuals, particularly in semantic processing tasks.
View Article and Find Full Text PDFNMR Biomed
February 2025
Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.
Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Department of Radiology, The Second Affiliated Hospital, Zhejiang University of Medicine, Hangzhou 310009, China.
CNS Neurosci Ther
December 2024
7T Magnetic Resonance Imaging Translational Medical Center, Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China.
Aims: The aim of this study was to investigate the whole-brain asymmetry changes in spinocerebellar ataxia type 3 (SCA3) and their association with movement disorders.
Methods: Voxel-based morphometry (VBM) was used to assess asymmetry in gray matter (GM) volume in 83 genetically confirmed SCA3 patients and 83 sex- and age-matched healthy controls (HCs). The asymmetry index (AI) was analyzed for partial correlation with disease severity, as measured by the Scale for Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale (ICARS).
J Epilepsy Res
December 2024
Department of Neurology, Seoul National University College of Medicine, Seoul, Korea.
Background And Purpose: The magnetic resonance images (MRIs) ability of lesion detection in epilepsy is crucial for a diagnosis and surgical outcome. Using automated artificial intelligence (AI)-based tools for measuring cortical thickness and brain volume originally developed for dementia, we aimed to identify whether it could lateralize epilepsy with normal MRIs.
Methods: Non-lesional 3-Tesla MRIs of 428 patients diagnosed with focal epilepsy, based on semiology and electroencephalography findings, were analyzed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!