Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to enhance l-tryptophan hydroxylation activity of l-phenylalanine 4-hydroxylase. It had been known that l-phenylalanine 4-hydroxylase from Chromobacterium violaceum could convert l-tryptophan to 5-hydroxy-l-tryptophan and l-phenylalanine to l-tyrosine; however, the activity for l-tryptophan was extremely low compared to l-phenylalanine activity levels. We used the information on the crystal structures of aromatic amino acid hydroxylases to generate C. violaceuml-phenylalanine 4-hydroxylase with high l-tryptophan hydroxylating activity. In silico structural modeling analysis suggested that hydrophobic and/or stacking interactions with the substrate and cofactor at L101 and W180 in C. violaceuml-phenylalanine 4-hydroxylase would increase hydroxylation activity. Based on this hypothesis, we introduced a saturation mutagenesis towards these sites followed by the evaluation of 5-hydroxy-l-tryptophan productivity using a modified Gibbs assay. Three and nine positive mutants were obtained from the L101 and W180 mutant libraries, respectively. Among the mutants, L101Y and W180F showed the highest l-tryptophan hydroxylation activity at the respective residues. Steady-state kinetic analysis revealed that k(cat) values for l-tryptophan hydroxylation were increased from 0.40 (wild-type) to 1.02 (L101Y) and 0.51 s(-1) (W180F). In addition, the double mutant (L101Y-W180F) displayed higher l-tryptophan hydroxylation activity than the wild-type and the W180F and L101Y mutants. The k(cat) value of L101Y-W180F increased to 2.08 s(-1), showing a 5.2-fold increase compared to wild-type enzyme levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2009.04.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!