Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
QSPR models for the prediction of UV maximum absorption wavelength (lambda(max)) of 69 flavones were developed based on their structures alone. A six-descriptor linear correlation by heuristic method (HM) and a nonlinear model using radial basis function neural network (RBFNN) approach were reported. The statistical parameters provided by the HM model (R2=0.961, F=207.820, RMS=6.555 for the training set and R2=0.967, F=293.218, RMS=7.176 for the test set) and the RBFNN model (R2=0.971, F=1826.086, RMS=5.350 for the training set, and R2=0.978, F=452.512, RMS=5.722 for the test set) indicated satisfactory stability and predictive ability. The descriptors appearing in these models are discussed. This QSPR approach is suitable for the prediction of maximum absorption wavelength of flavones, and can contribute to a better understanding of structural factors of the organic compounds responsible for it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.aca.2009.07.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!