Background: The mosquito vectors of Plasmodium spp. have largely been overlooked in studies of ecology and evolution of avian malaria and other vertebrates in wildlife.

Methods: Plasmodium DNA from wild-caught Coquillettidia spp. collected from lowland forests in Cameroon was isolated and sequenced using nested PCR. Female Coquillettidia aurites were also dissected and salivary glands were isolated and microscopically examined for the presence of sporozoites.

Results: In total, 33% (85/256) of mosquito pools tested positive for avian Plasmodium spp., harbouring at least eight distinct parasite lineages. Sporozoites of Plasmodium spp. were recorded in salivary glands of C. aurites supporting the PCR data that the parasites complete development in these mosquitoes. Results suggest C. aurites, Coquillettidia pseudoconopas and Coquillettidia metallica as new and important vectors of avian malaria in Africa. All parasite lineages recovered clustered with parasites formerly identified from several bird species and suggest the vectors capability of infecting birds from different families.

Conclusion: Identifying the major vectors of avian Plasmodium spp. will assist in understanding the epizootiology of avian malaria, including differences in this disease distribution between pristine and disturbed landscapes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3152766PMC
http://dx.doi.org/10.1186/1475-2875-8-193DOI Listing

Publication Analysis

Top Keywords

avian malaria
16
plasmodium spp
16
vectors avian
12
malaria africa
8
salivary glands
8
avian plasmodium
8
parasite lineages
8
avian
6
coquillettidia
5
vectors
5

Similar Publications

Parasites have their strongest impact on fitness when host defences deplete resources needed for other critical life-history stages, such as development, breeding or migration. Among birds, one greatly neglected stage that could be altered by parasites is post-juvenile moult (PJM), through which yearling juvenile birds replace their fast-generated, low-quality juvenile feathers with adult-like feathers after leaving the nest. The earlier the birds complete PJM, the earlier they will be prepared to withstand forthcoming challenges, such as adverse winter conditions or migration.

View Article and Find Full Text PDF

The parasite island syndrome denotes shifts in parasite life histories on islands, which affect parasite diversity, prevalence and specificity. However, current evidence of parasite island syndromes mainly stems from oceanic islands, while sky islands (i.e.

View Article and Find Full Text PDF

Scaling up to understand disease risk: distinct roles of host functional traits in shaping infection risk of avian malaria across different scales.

Proc Biol Sci

January 2025

MOE Key Laboratory of Biosystems Homeostasis & Protection, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.

Understanding the impacts of diversity on pathogen transmission is essential for public health and biological conservation. However, how the outcome and mechanisms of the diversity-disease relationship vary across biological scales in natural systems remains elusive. In addition, although the role of host functional traits has long been established in disease ecology, its integration into the diversity-disease relationship largely falls behind.

View Article and Find Full Text PDF

Culex pipiens is an invasive mosquito found in temperate regions globally. It is considered among the most important disease vectors worldwide and is responsible for the transmission of a range of pathogens, including West Nile virus, avian malaria, Saint Louis encephalitis, and filarial worms. Throughout its northern temperate range, this mosquito is found in 2 ecotypes: form pipiens and form molestus.

View Article and Find Full Text PDF

Do specialist and generalist parasites differ in their prevalence and intensity of infection? A test of the niche breadth and trade-off hypotheses.

Int J Parasitol

December 2024

Estación Biológica de Doñana, Departamento de Biología de la Conservación y Cambio Global, Av. Américo Vespucio 26, 41092 Sevilla, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain.

Studying host specificity is crucial to understanding the ability of parasites to spread to new hosts and trigger disease emergence events. The relationship between host specificity and parasite prevalence and infection intensity, has typically been studied in the context of two opposing hypotheses. According to the trade-off hypothesis generalist parasites, which can infect a broad range of hosts, will reach a lower prevalence and infection intensity than more specialist parasites due to the higher costs to adapt to multiple host immune systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!