Treatment with ephrin B2 positively impacts the abnormal metabolism of human osteoarthritic chondrocytes.

Arthritis Res Ther

Osteoarthritis Research Unit, University of Montreal Hospital Research Centre, Notre-Dame Hospital, 1560 Sherbrooke Street East, Montreal, Quebec, Canada.

Published: December 2009

Introduction: Members of the ephrin system, the ephrin receptor erythropoietin-producing hepatocellular B4 (EphB4) and its specific ligand, ephrin B2, appear to be involved in the bone remodelling process. We recently showed that their interaction inhibits the resorptive activity of human osteoarthritic (OA) subchondral bone osteoblasts. Hence, we further investigated the possible implication of these ephrin members on the catabolic/anabolic activities of human OA chondrocytes.

Methods: EphB4 receptor and ephrin B2 levels were determined by quantitative PCR and immunohistochemistry, and the effects of ephrin B2 on the expression/production of factors involved in the OA process.

Results: EphB4 receptors and ephrin B2 ligands are expressed and produced by human normal and OA chondrocytes. Ephrin B2 protein was found at similar levels in both cartilage types, whereas EphB4 receptor expression (P < 0.0001) and production (P < 0.01) levels were significantly increased in OA chondrocytes/cartilage. Ephrin B2 treatment significantly inhibited the interleukin (IL)-1beta, IL-6, matrix metalloproteinase-1 (MMP-1), MMP-9, MMP-13, and proteinase-activated receptor-2 (PAR-2) gene expression levels, whereas MMP-2 was unaffected, and significantly increased collagen type II, a cartilage specific macromolecule. It also inhibited the IL-1beta stimulated protein production of IL-6, MMP-1 and MMP-13.

Conclusions: Our study is the first to provide data on the presence and role of ephrin B2/EphB4 receptors in human chondrocytes/cartilage. Data showed that ephrin B2 treatment positively impacts the abnormal metabolism of OA cartilage by inhibiting important catabolic factors involved in this disease at the same time as increasing anabolic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2745802PMC
http://dx.doi.org/10.1186/ar2782DOI Listing

Publication Analysis

Top Keywords

ephrin
11
positively impacts
8
impacts abnormal
8
abnormal metabolism
8
human osteoarthritic
8
ephb4 receptor
8
factors involved
8
ephrin treatment
8
human
5
treatment ephrin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!