We present a two-dimensional solution NMR spectrum of an integral membrane protein (IMP) in a nanodisc. Solution NMR relies on rapid isotropic tumbling of the analyte with correlation times in the nanosecond range. IMPs in a cellular membrane do not satisfy this condition. Previous liquid-state NMR studies on IMPs were conducted in organic solvent or artificial membrane mimicking particles like detergent micelles. Nanodiscs are relatively small (150 kDa), detergent-free model membranes that are suitable for functional reconstitution of IMPs. Nanodiscs allow solubilization of integral membrane proteins in a nearly native lipid bilayer environment. The 70 residue polypeptide CD4mut was incorporated into nanodiscs. CD4mut features one transmembrane helix. The aliphatic (1)H-(13)C HSQC spectrum of nanodiscs with inserted, ((13)C, (15)N)-labeled CD4mut exhibits reasonably dispersed protein and lipid NMR signals. Our results demonstrate that IMPs in nanodiscs are amenable to liquid-state NMR methodology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja904897p | DOI Listing |
Science
January 2025
State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of High-Performance Polymer Materials & Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
We explored the potential for membrane materials to reduce energy and carbon requirements for the separation of aliphatic hydrocarbon feedstocks and products. We developed a series of fluorine-rich poly(arylene amine) polymer membranes that feature rigid polymer backbones with segregated perfluoroalkyl side chains. This combination imbues the polymers with resistance to dilation induced by hydrocarbon immersion without the loss of solution-based membrane fabrication techniques.
View Article and Find Full Text PDFScience
January 2025
Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany.
Elucidating the interaction between membrane proteins and antibodies requires whole-cell imaging at high spatiotemporal resolution. Lattice light-sheet (LLS) microscopy offers fast volumetric imaging but suffers from limited spatial resolution. DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT) achieves molecular resolution but is restricted to two-dimensional imaging owing to long acquisition times.
View Article and Find Full Text PDFChem Asian J
January 2025
Keio University Faculty of Science and Technology Graduate School of Science and Technology: Keio Gijuku Daigaku Rikogakubu Daigakuin Rikogaku Kenkyuka, Department of Applied Chemistry, 3-14-1 Hiyoshi, Kohoku-ku, 2238522, Yokohama, JAPAN.
For the development of new functional materials for various applications, such as drug or gene delivery and environmental remediation, the relationship between function and morphology has been considered an important aspect for controlling affinity to the targets. However, there are only a few reports on this relationship because the molecular strategy for the precise control of vesicle shape has been restricted. Herein, we report the photocontrol of vesicle shape using azobenzene-containing amphiphilic switches.
View Article and Find Full Text PDFBJS Open
December 2024
Institute of Cardiovascular Sciences, University College London, London, UK.
Background: While most thyroid nodules are benign, 7-15% are malignant. Patients with indeterminate thyroid nodules (specifically Bethesda IV/Thy3f) often undergo diagnostic hemithyroidectomy to reach a diagnosis on final histology. The aim of this study was to assess the feasibility of circulating large extracellular vesicles as diagnostic biomarkers in patients presenting with Thy3f thyroid nodules.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, Cixi Biomedical Research Institute, School of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou 325035, China.
Accurate identification of cancer cells under complex physiological environments holds great promise for noninvasive diagnosis and personalized medicine. Herein, we developed dual-aptamer-based DNA logic-gated series lamp probes (Apt-SLP) by coupling a DNA cell-classifier (DCC) with a self-powered signal-amplifier (SSA), enabling rapid and sensitive identification of cancer cells in a blood sample. DCC is endowed with two extended-aptamer based modules for recognizing the two cascade cell membrane receptors and serves as a DNA logic gate to pinpoint a particular and narrow subpopulation of cells from a larger population of similar cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!