The generation of cell surface polarity in transporting epithelial cells occurs in three distinct stages that involve cell-cell recognition and adhesion, cell surface remodelling to form biochemically and functionally distinct cell surface domains, and development of vectorial function. A widely used model system to study mechanisms involved in these stages is the Madin-Darby canine kidney (MDCK) cell line. Under appropriate growth conditions, MDCK cells develop in similar stages into polarized, multicellular epithelial structures. Analysis of membrane-cytoskeletal proteins ankyrin and fodrin during development of MDCK cell surface polarity shows that they gradually assemble into an insoluble protein complex on the basal-lateral membrane domain upon cell-cell adhesion, concomitantly with the redistribution of Na+,K(+)-ATPase, a marker protein of the basal-lateral membrane. Biochemical analysis shows that ankyrin, fodrin occur in a complex with Na+,K(+)-ATPase and the cell adhesion molecule uvomorulin in MDCK cells. A model is presented in which assembly of membrane-cytoskeletal complexes at sites of uvomorulin-induced cell-cell contact causes a remodelling of the cell surface distribution of specific membrane proteins which, in turn, contributes to the generation of epithelial cell surface polarity.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!