To operate the white-rot fungal reactor under non-sterile conditions has important significance for its practical applications. Ozone (0.0144 mg/min) was selected as the bactericide to control the bacterial contamination in a white-rot fungal reactor. The control effect on bacteria, enzyme production, pH variation and decolorization of a recalcitrant dye (acid blue 45) in the reactor were studied during continuously operating the reactor. It was found that, the contamination bacteria were controlled at under a number of 1 x 10(5)-1 x 10(6) CFU/mL and the inactivation rate of contaminating bacteria in white-rot fungal reactor was close to 99%. The Phanerochaete chrysosporium continuously produced MnP with the maximum residual activity of 50 U/L and degraded the acid blue 45 with a rate of 40%-80%. At around pH 6, the system still had the capability to continuously produce MnP and degrade the acid blue 45. To keep the growth of white-rot fungi and production of MnP for a long-term operation is a next step point to be solved.
Download full-text PDF |
Source |
---|
Sci Rep
January 2025
National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.
View Article and Find Full Text PDFBioresour Technol
January 2025
Engineering Research Center of Watershed Carbon Neutrality of Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, PR China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, PR China. Electronic address:
This study investigates the photoinduction techniques for the maximization of astaxanthin production in Chromochloris zofingiensis following heterotrophic growth. Leveraging blue light, this study enhanced carbon allocation by suppressing the tricarboxylic acid cycle and activating the methylerythritol phosphate and pentose phosphate pathways to facilitate astaxanthin accumulation. Under blue light, an astaxanthin content of 5.
View Article and Find Full Text PDFAesthet Surg J Open Forum
December 2024
Hyaluronic acid fillers rarely cause potentially devastating occlusive adverse events that require immediate hyaluronidase salvage infiltrations. An exploratory photographic investigation probed whether topical heparin's anticlotting and anti-inflammatory properties could synergize with and enhance the effectiveness of hyaluronidase. Based on heparin pharmacodynamics, the authors explored the rationale for associating topical heparins with hyaluronidase in treating occlusive side effects following accidental intra-arterial hyaluronic acid injections.
View Article and Find Full Text PDFAnalyst
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
A novel electrochemical microsensor was constructed on a traditional acupuncture needle (AN) and used to monitor a biomarker of the SARS-CoV-2-N protein. The reversible interaction of the borate bond between the -diol in this glycoprotein and the phenylboronic acid in 4-mercaptophenylboronic acid (4-MPBA) was accomplished. This interaction was applied to anchor the SARS-CoV-2-N protein onto 4-MPBA, which was covalently self-assemblied onto electrodeposited AuNPs by the S-Au bond.
View Article and Find Full Text PDFArch Biochem Biophys
January 2025
Pharmacological Sciences Research Lab, Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan. Electronic address:
Aim: The aim of the current study was to investigate the potential therapeutic effect of kaurenoic acid (KA) against Monosodium Urate Crystals (MSU)- induced acute gout by downregulation of NF-κB signaling pathway, mitigating inflammation and oxidative stress produced by MSU crystals. KA potentially targeted NF-κB pathway activation and provided comprehensive insights through multiple approaches. This was accomplished by advanced analytical techniques.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!