Carbon nanofibres aerosolized by the agitation of as-produced commercial powder have been characterized in situ by using the differential mobility analyser-aerosol particle mass analyser (DMA-APM) method to determine their structural properties such as the effective density and fractal dimension for toxicology study. The effective density of the aerosolized carbon nanofibres decreased from 1.2 to 0.4 g cm(-3) as the mobility diameters increased from 100 to 700 nm, indicating that the carbon nanofibres had open structures with an overall void that increased with increasing diameter, due to increased agglomeration of the nanofibres. This was confirmed by transmission electron microscopy (TEM) observation, showing that 100 nm mobility diameter nanofibres were predominantly single fibres, while doubly or triply attached fibres were seen at mobility diameters of 200 and 400 nm. Effective densities calculated using Cox's theory were in reasonable agreement with experimental values. The mass fractal dimension of the carbon nanofibres was found to be 2.38 over the size range measured and higher than that of single-walled carbon nanotubes (SWCNTs), suggesting that the carbon nanofibres have more compact structure than SWCNTs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/17/14/042 | DOI Listing |
Sci Rep
December 2024
Department of Chemical Engineering, RVR & JC College of Engineering (A), Guntur, Andhra Pradesh, 522019, India.
The study analyzed the aqueous leaf extracts of Moringa oleifera and Musa sps. for phytochemical components, including flavonoids, sterols, saponins, tannins, and glycosides. The LC-MS analysis revealed gingerol, vicenin-2, caffeic acid, quercetin, and other compounds in the extracts.
View Article and Find Full Text PDFSmall
December 2024
School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die and Mold Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key processes in numerous oxygen-involved applications over a wide temperature range. Despite advances in nanofiber engineering to increase active site density and catalytic efficiency for ORR/OER, conventional electrode fabrication methods often compromise the integrity of nanofibrous structures. Herein, a robust strategy is presented for the fabrication of LaCoNiO (LCN) nanofibrous membranes using optimized electrospinning techniques.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Research Lab of Advanced, Composite, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Str., Zographos, 15780 Athens, Greece.
In this paper, we explore a straightforward two-step method to produce high-purity, vertically aligned multi-walled carbon nanofibres (MWCNFs) via chemical vapor deposition (CVD). Two distinct solutions are utilized for this CVD method: a catalytic solution consisting of ferrocene and acetonitrile (ACN) and a carbon source solution with camphor and ACN. The vapors of the catalytic solution inserted in the reaction chamber through external boiling result in a floating catalyst CVD approach that produces vertically aligned CNFs in a consistent manner.
View Article and Find Full Text PDFACS Sustain Chem Eng
December 2024
Department of Chemical Engineering, Faculty of Engineering and Design, University of Bath, Bath BA2 7AY, U.K.
High-performance and sustainable membranes for water desalination applications are crucial to address the growing global demand for clean water. Concurrently, electrospinning has emerged as a versatile manufacturing method for fabricating nanofibrous membranes for membrane distillation. However, widespread adoption of electrospinning for processing water-insoluble polymers, such as fluoropolymers, is hindered by the reliance on hazardous organic solvents during production.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, PR China. Electronic address:
Aqueous zinc-ion hybrid micro-supercapacitors (AZIHMSCs) with high power density, moderate energy density, good cycle life and excellent safety are promising candidates for micro-energy storage. Among them, AZIHMSCs based on TiCT MXene anodes and battery-type cathodes can provide superior performance. However, two-dimensional (2D) TiCT MXene electrodes have an inherent restacking issue and -F surface terminations that hinder ion diffusion and ultimately reduce the energy storage capacity of the corresponding AZIHMSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!