We report here on the fabrication of a three-dimensional array of nanoparticles which bridges the gap between lithographically defined gold electrode contacts separated by 20 nm. The nanoparticle assemblies are formed from about 5 nm gold nanoparticles and benzenedimethanethiol (BDMT) bridging ligands. These assemblies are introduced between the contacts using a layer-by-layer protocol with successive BDMT self-assembly being followed by nanoparticle adsorption until the gap is bridged. The temperature dependent electrical properties of these devices are analysed to establish whether they are consistent with the notion that the networks are built up from molecularly interlinked discrete gold nanoparticles. To aid this analysis the molecular conductance of single bridging molecules is also characterized at room temperature using a recently introduced method based on the scanning tunnelling microscope (STM). From these measurements it is concluded that the room temperature electrical properties of the nanostructured networks are limited by the small interparticle connectivity and the inherent resistance of the linker molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/17/14/001DOI Listing

Publication Analysis

Top Keywords

gold nanoparticles
8
electrical properties
8
room temperature
8
combined top-down
4
top-down bottom-up
4
bottom-up approach
4
approach introducing
4
introducing nanoparticle
4
nanoparticle networks
4
networks nanoelectrode
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!