Adaptive fuzzy switched swing-up and sliding control for the double-pendulum-and-cart system.

IEEE Trans Syst Man Cybern B Cybern

Department of Electrical Engineering, National I-Lan University, I-Lan 260, Taiwan.

Published: February 2010

In this paper, an adaptive fuzzy switched swing-up and sliding controller (AFSSSC) is proposed for the swing-up and position controls of a double-pendulum-and-cart system. The proposed AFSSSC consists of a fuzzy switching controller (FSC), an adaptive fuzzy swing-up controller (FSUC), and an adaptive hybrid fuzzy sliding controller (HFSC). To simplify the design of the adaptive HFSC, the double-pendulum-and-cart system is reformulated as a double-pendulum and a cart subsystem with matched time-varying uncertainties. In addition, an adaptive mechanism is provided to learn the parameters of the output fuzzy sets for the adaptive HFSC. The FSC is designed to smoothly switch between the adaptive FSUC and the adaptive HFSC. Moreover, the sliding mode and the stability of the fuzzy sliding control systems are guaranteed. Simulation results are included to illustrate the effectiveness of the proposed AFSSSC.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TSMCB.2009.2025964DOI Listing

Publication Analysis

Top Keywords

adaptive fuzzy
12
double-pendulum-and-cart system
12
adaptive hfsc
12
adaptive
9
fuzzy switched
8
switched swing-up
8
swing-up sliding
8
sliding control
8
sliding controller
8
proposed afsssc
8

Similar Publications

This study attempted to optimize the adaptive neuro-fuzzy inference system (ANFIS) using particle swarm optimization (PSO) and a genetic algorithm (GA) for calculating occupational risk. Numerous studies have shown that the ANFIS is a good approach for predicting engineering problems. However, it is not well investigated in the area of risk assessment.

View Article and Find Full Text PDF

An autonomous vehicles' test case extraction method: Example of vehicle-to-pedestrian scenarios.

Heliyon

January 2025

Key Lab of Forensic Science, Ministry of Justice, China (Academy of Forensic Science), Shanghai, 200063, China.

Testing autonomous vehicles (AVs) in hazardous scenarios is a crucial technical approach to ensure their safety. A key aspect of this process is the generation of hazard scenarios. In general, such scenarios are generated through cluster analysis of traffic accident data.

View Article and Find Full Text PDF

Given their potential as natural substitutes for artificial additives and their health advantages, the extraction of bioactive substances like polyphenols from plant sources is becoming more and more significant. Nevertheless, it is still difficult to achieve effective extraction with minimal time and energy. In order to optimize polyphenol extraction from ripe jamun fruit pulp, including traditional and ultrasound-assisted methods, this study assessed the prediction power of response surface methodology (RSM) and adaptive neuro-fuzzy inference systems (ANFIS).

View Article and Find Full Text PDF

Fuzzy self-tuning fractional order PD permanent magnet synchronous motor speed control based on torque compensation.

Sci Rep

January 2025

Changchun Automobile Economic & Technological Development Zone Employment Service Bureau, Jilin City, China.

The permanent magnet synchronous motor control system is characterized by its nonlinear and strongly coupled complexity, presenting significant challenges for control performance optimization. To address these challenges, a Fuzzy adaptive fractional order [Formula: see text] control strategy based on torque observation compensation is proposed. The parameters of the fractional order [Formula: see text] controller are optimized real time using fuzzy logic reasoning, in order to enhance the speed of parameters tuning, a graphical design method of the fractional order [Formula: see text] controller parameters based on frequency domain performance indicators is proposed to obtain the initial values of the fuzzy adaptive fractional order [Formula: see text] controller parameters graphically and intuitively.

View Article and Find Full Text PDF

Application of supervised learning models for enhanced lead (II) removal from wastewater via modified cellulose nanocrystals (CNCs).

J Environ Sci Health A Tox Hazard Subst Environ Eng

January 2025

Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Florida, South Africa.

Heavy metal ions are acknowledged to impact the environment and human health adversely. CNCs are effective materials for removing heavy metal ions in industrial applications and process innovations since they can be used in static and dynamic adsorption processes. Cost-effective, uncomplicated water treatment technologies must be developed using biodegradable polymers, namely, modified cellulose nanocrystals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!