AI Article Synopsis

Article Abstract

We have developed a comprehensive, Bayesian, PBPK model-based analysis of the population toxicokinetics of trichloroethylene (TCE) and its metabolites in mice, rats, and humans, considering a wider range of physiological, chemical, in vitro, and in vivo data than any previously published analysis of TCE. The toxicokinetics of the "population average," its population variability, and their uncertainties are characterized in an approach that strives to be maximally transparent and objective. Estimates of experimental variability and uncertainty were also included in this analysis. The experimental database was expanded to include virtually all available in vivo toxicokinetic data, which permitted, in rats and humans, the specification of separate datasets for model calibration and evaluation. The total combination of these approaches and PBPK analysis provides substantial support for the model predictions. In addition, we feel confident that the approach employed also yields an accurate characterization of the uncertainty in metabolic pathways for which available data were sparse or relatively indirect, such as GSH conjugation and respiratory tract metabolism. Key conclusions from the model predictions include the following: (1) as expected, TCE is substantially metabolized, primarily by oxidation at doses below saturation; (2) GSH conjugation and subsequent bioactivation in humans appear to be 10- to 100-fold greater than previously estimated; and (3) mice had the greatest rate of respiratory tract oxidative metabolism as compared to rats and humans. In a situation such as TCE in which there is large database of studies coupled with complex toxicokinetics, the Bayesian approach provides a systematic method of simultaneously estimating model parameters and characterizing their uncertainty and variability. However, care needs to be taken in its implementation to ensure biological consistency, transparency, and objectivity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2009.07.032DOI Listing

Publication Analysis

Top Keywords

rats humans
16
characterizing uncertainty
8
population variability
8
toxicokinetics trichloroethylene
8
metabolites mice
8
mice rats
8
bayesian approach
8
model predictions
8
gsh conjugation
8
respiratory tract
8

Similar Publications

Background: Rheumatic heart disease (RHD), which is caused mainly by Group A Streptococcus, leads to fibrotic damage to heart valves. Recently, endothelial‒mesenchymal transition (EndMT), in which activin plays an important role, has been shown to be an important factor in RHD valvular injury. However, the mechanism of activin activity and EndMT in RHD valvular injury is not clear.

View Article and Find Full Text PDF

Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.

View Article and Find Full Text PDF

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

Revisiting the Metabolism of Donepezil in Rats Using Non-Targeted Metabolomics and Molecular Networking.

Pharmaceutics

January 2025

BK21 FOUR KNU Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.

: Although donepezil, a reversible acetylcholinesterase inhibitor, has been in use since 1996, its metabolic characteristics remain poorly characterized. Therefore, this study aims to investigate the in vivo metabolism of donepezil using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) based on a molecular networking (MN) approach integrated with a non-targeted metabolomics approach. : After the oral administration of donepezil (30 mg/kg) in rats, urine, feces, and liver samples were collected for LC-HRMS analysis.

View Article and Find Full Text PDF

For several decades, protein drugs (biologics) made in cell cultures have been delivered as sterile injections, decreasing their affordability and patient preference. Angiotensin Converting Enzyme 2 (ACE2) gum is the first engineered human blood protein expressed in plant cells approved by the FDA without the need for purification and is a cold-chain and noninvasive drug delivery. This biologic is currently being evaluated in human clinical studies to debulk SARS-CoV-2 in the oral cavity to reduce coronavirus infection/transmission (NCT00543318).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!