Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1524-475X.2009.00495.x | DOI Listing |
Int J Pharm
January 2025
Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 Iran. Electronic address:
Multifunctional dual-layer wound dressings hold significant promise for comprehensive full-thickness wound management by closely mimicking the native skin structure and features. Herein, we employed an innovative approach utilizing electrospinning techniques to develop a dual-layer dressing comprising a microfibrous Ecoflex®-Vanillin (Ex-Vnil) top layer (TL) and a nanofibrous Soluplus®-Insulin-like growth factor-1 (Sol-IGF1) bottom layer (BL). The tensile properties of dual-layer wound dressings were within the standard range for use in skin tissue regeneration.
View Article and Find Full Text PDFCell Tissue Bank
January 2025
Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka, 1349, Bangladesh.
In the quest for an ideal wound healing material, human amniotic membrane (AM), tilapia skin collagen (TSC), and Centella asiatica (CA) have been studied separately for their healing potential. In this study, we formulated AM, TSC, and CA gel and studied their competency and wound healing efficacy in vivo. Gel was formulated using AM, TSC, CA, Carbopol 934, acrylic acid, glycerine, and triethanolamine and physicochemical properties e.
View Article and Find Full Text PDFInt J Low Extrem Wounds
January 2025
Laser Physics Department, College of Science for Women, University of Babylon, Hillah, Iraq.
The utilization of zinc oxide nanoparticles is thought to augment wound healing because of their antibacterial characteristics and capacity to stimulate cellular regeneration, especially in instances of minor burn injuries. On the other hand, it has been shown that tissue regeneration is aided by low-power laser therapy via photobiomodulation. Zinc oxide nanoparticles and low-power laser therapy are the two therapeutic modalities that will be compared in this study in order to assess how well they promote healing after burn injury and provide important new information on improved wound care techniques.
View Article and Find Full Text PDFTheranostics
January 2025
State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
The EGFR-driven angiogenesis is crucial in solid tumors, particularly through the delivery of biomolecules via extracellular vesicles (EVs), but the mechanism by which EGFR regulates EV cargo is still unclear. First, cell co-culture and murine tumor models were employed to examine the impact of EGFR overexpression on the pro-angiogenic properties of small EVs (sEVs) derived from oral squamous cell carcinoma (OSCC). Small RNA sequencing was then used to compare the miRNA profiles of OSCC-sEVs with and without EGFR overexpression, followed by functional enrichment and motif analyses of the differentially expressed miRNAs.
View Article and Find Full Text PDFNarra J
December 2024
Department of Plastic Reconstructive and Aesthetic Surgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia.
Previous studies have explored nanofat stimulating tissue regeneration and maturation, promoting remodeling through its rich content of growth factors and stem cells; however, comprehensive data on its use in full-thickness wounds remains limited. The aim of this study was to evaluate the effectiveness of combining nanofat with freeze-dried human amniotic membrane (FDHAM) for treating full-thickness wounds in a rabbit model. An animal experimental study using a post-test control group design was conducted.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!