Recording and controlling the 4D light field in a microscope using microlens arrays.

J Microsc

Computer Science Department, Stanford University, Stanford, California, USA.

Published: August 2009

By inserting a microlens array at the intermediate image plane of an optical microscope, one can record four-dimensional light fields of biological specimens in a single snapshot. Unlike a conventional photograph, light fields permit manipulation of viewpoint and focus after the snapshot has been taken, subject to the resolution of the camera and the diffraction limit of the optical system. By inserting a second microlens array and video projector into the microscope's illumination path, one can control the incident light field falling on the specimen in a similar way. In this paper, we describe a prototype system we have built that implements these ideas, and we demonstrate two applications for it: simulating exotic microscope illumination modalities and correcting for optical aberrations digitally.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2818.2009.03195.xDOI Listing

Publication Analysis

Top Keywords

light field
8
microlens array
8
light fields
8
recording controlling
4
light
4
controlling light
4
field microscope
4
microscope microlens
4
microlens arrays
4
arrays inserting
4

Similar Publications

Metasurface higher-order poincaré sphere polarization detection clock.

Light Sci Appl

January 2025

National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, 410082, Changsha, China.

Accurately and swiftly characterizing the state of polarization (SoP) of complex structured light is crucial in the realms of classical and quantum optics. Conventional strategies for detecting SoP, which typically involves a sequence of cascaded optical elements, are bulky, complex, and run counter to miniaturization and integration. While metasurface-enabled polarimetry has emerged to overcome these limitations, its functionality predominantly remains confined to identifying SoP within the standard Poincaré sphere framework.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance.

View Article and Find Full Text PDF

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

The widespread use of light-emitting diodes (LEDs) has increased blue light (BL) exposure, raising concerns about its potential adverse effects on ocular health. Prolonged exposure to BL has been implicated in the pathogenesis of various retinal disorders, including age-related macular degeneration (AMD), primarily through mechanisms involving oxidative stress and inflammation mediated by the overproduction of reactive oxygen species (ROS). This review synthesizes current evidence on the photoprotective properties of dietary bioactive compounds, (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!