Bradyrhizobium japonicum utilizes cytochrome cbb(3) oxidase encoded by the fixNOQP operon to support microaerobic respiration under free-living and symbiotic conditions. It has been previously shown that, under denitrifying conditions, inactivation of the cycA gene encoding cytochrome c(550), the electron donor to the Cu-containing nitrite reductase, reduces cbb(3) expression. In order to establish the role of c(550) in electron transport to the cbb(3) oxidase, in this work, we have analyzed cbb(3) expression and activity in the cycA mutant grown under microaerobic or denitrifying conditions. Under denitrifying conditions, mutation of cycA had a negative effect on cytochrome c oxidase activity, heme c (FixP and FixO) and heme b cytochromes as well as expression of a fixP'-'lacZ fusion. Similarly, cbb(3) oxidase was expressed very weakly in a napC mutant lacking the c-type cytochrome, which transfers electrons to the NapAB structural subunit of the periplasmic nitrate reductase. These results suggest that a change in the electron flow through the denitrification pathway may affect the cellular redox state, leading to alterations in cbb(3) expression. In fact, levels of fixP'-'lacZ expression were largely dependent on the oxidized or reduced nature of the carbon source in the medium. Maximal expression observed in cells grown under denitrifying conditions with an oxidized carbon source required the regulatory protein RegR.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1574-6968.2009.01711.xDOI Listing

Publication Analysis

Top Keywords

denitrifying conditions
20
cbb3 oxidase
12
cbb3 expression
12
bradyrhizobium japonicum
8
conditions denitrifying
8
c550 electron
8
carbon source
8
expression
7
cbb3
7
conditions
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!