Electromagnetic field quantization in time-dependent linear media.

Phys Rev Lett

Departamento de Física, CCEN, Universidade Federal da Paraíba, Caixa Postal 5008, 58059-900, João Pessoa, PB, Brazil.

Published: July 2009

We present a quantization scheme for the electromagnetic field in time-dependent homogeneous nondispersive conducting and nonconducting linear media without sources. Using the Coulomb gauge, we demonstrate this quantization can be mapped into a damped (attenuated) time-dependent quantum harmonic oscillator. Remarkably, we find that the time dependence of the permittivity, for epsilon>0, gives rise to an attenuation of the radiation field. Afterwards, we obtain the exact wave functions for this problem and consider an exponential time accretion of the permittivity as a particular case.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.103.010402DOI Listing

Publication Analysis

Top Keywords

electromagnetic field
8
linear media
8
field quantization
4
quantization time-dependent
4
time-dependent linear
4
media quantization
4
quantization scheme
4
scheme electromagnetic
4
field time-dependent
4
time-dependent homogeneous
4

Similar Publications

Prospects and applications of efficient physical field processing technologies for polysaccharide extraction and quality improvement in edible mushrooms: A systematic review.

Int J Biol Macromol

January 2025

Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China. Electronic address:

Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.

View Article and Find Full Text PDF

A guidance to intelligent metamaterials and metamaterials intelligence.

Nat Commun

January 2025

ZJU-UIUC Institute, Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, China.

The bidirectional interactions between metamaterials and artificial intelligence have recently attracted immense interest to motivate scientists to revisit respective communities, giving rise to the proliferation of intelligent metamaterials and metamaterials intelligence. Owning to the strong nonlinear fitting and generalization ability, artificial intelligence is poised to serve as a materials-savvy surrogate electromagnetic simulator and a high-speed computing nucleus that drives numerous self-driving metamaterial applications, such as invisibility cloak, imaging, detection, and wireless communication. In turn, metamaterials create a versatile electromagnetic manipulator for wave-based analogue computing to be complementary with conventional electronic computing.

View Article and Find Full Text PDF

"Primum Non Nocere": Instructions for How to Safely Use Pulsed Field Ablation.

JACC Clin Electrophysiol

January 2025

Heart Rhythm Center, Centro Cardiologico Monzino, IRCCS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy. Electronic address:

View Article and Find Full Text PDF

Measuring low light absorption with combined uncertainty <1 per mil (‰) is crucial for many applications. Popular cavity ring-down spectroscopy can provide ultrahigh precision, below 0.01‰, but its accuracy is often worse than 5‰ due to inaccuracies in light intensity measurements.

View Article and Find Full Text PDF

Absorption-Emission Codes for Atomic and Molecular Quantum Information Platforms.

Phys Rev Lett

December 2024

University of Maryland, NIST, Joint Center for Quantum Information and Computer Science, /, College Park, Maryland 20742, USA.

Diatomic molecular codes [V. V. Albert, J.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!