We study numerically frictionless ellipse packings versus the aspect ratio alpha, and find that the jamming transition is fundamentally different from that for spherical particles. The normal mode spectra possess two gaps and three distinct branches over a range of alpha. The energy from deformations along modes in the lowest-energy branch increases quartically, not quadratically. The quartic modes cause novel power-law scaling of the static shear modulus and their number matches the deviation from isostaticity. These results point to a new critical point at alpha>1 that controls jamming of aspherical particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.102.255501 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China.
The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro.
View Article and Find Full Text PDFLangmuir
January 2025
Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Mohali, Punjab 140306, India.
Enzyme-instructed signal generation at liquid-liquid interfaces presents a novel strategy for controlling and detecting biochemical processes on macroscopic scales. Here, we explore the self-assembly and jamming of pillar[5]arene (P[5]A) derivatives at the oil-water interface via a copper-mediated "click" reaction, providing a versatile platform for generating observable signals. The formation of a pillar[5]arenes network at the droplet interface reduces interfacial tension, allowing droplets to adopt various nonequilibrium shapes based on the interfacial jamming process.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Stony Brook Institute at Anhui University, Hefei 230000, China.
The Internet of Things (IoT) contains many devices that can compute and communicate, creating large networks. Industrial Internet of Things (IIoT) represents a developed application of IoT, connecting with embedded technologies in production in industrial operational settings to offer sophisticated automation and real-time decisions. Still, IIoT compels significant cybersecurity threats beyond jamming and spoofing, which could ruin the critical infrastructure.
View Article and Find Full Text PDFSoft Matter
January 2025
Delft University of Technology, Process & Energy Laboratory, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands.
The jamming transition of soft particles characterized by narrow size distributions has been well studied by physicists. However, polydispersed systems are more relevant to engineering, and the influence of polydispersity on jamming phenomena is still unexplored. Here, we numerically investigate jamming transitions of polydispersed soft particles in two dimensions.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, College of Information Engineering, China Jiliang University, Hangzhou 310018, China.
This paper presents research on the security performance of a multi-user interference-based mixed RF/FSO system based on SWIPT untrusted relay. In this work, the RF and FSO channels experience Nakagami-m fading distribution and Málaga (M) turbulence, respectively. Multiple users transmit messages to the destination with the help of multiple cooperating relays, one of which may become an untrusted relay as an insider attacker.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!