The new alpha-Fe(Te,Se) superconductors share the common iron building block and ferminology with the LaFeAsO and BaFe(2)As(2) families of superconductors. In contrast with the predicted commensurate spin-density-wave order at the nesting wave vector (pi, 0), a completely different magnetic order with a composition tunable propagation vector (deltapi, deltapi) was determined for the parent compound Fe_{1+y}Te in this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a short-range one even in the highest T_{C} sample. An alternative to the prevailing nesting Fermi surface mechanism is required to understand the latest family of ferrous superconductors.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.247001DOI Listing

Publication Analysis

Top Keywords

antiferromagnetic order
8
alpha-fetese superconductors
8
tunable deltapi
4
deltapi deltapi-type
4
deltapi-type antiferromagnetic
4
order
4
order alpha-fetese
4
superconductors
4
superconductors alpha-fetese
4
superconductors share
4

Similar Publications

Structural and magnetic phase transitions in EuLaFe(BO) (x = 0, 0.18).

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.

The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.

View Article and Find Full Text PDF

We report the detailed investigation of the magnetic, transport, and magnetocaloric effects of GdS- bSe by magnetic susceptibility χ(T ), isothermal magnetization M (H), resistivity ρ(T, H), and heat capacity Cp(T ) measurements, crystallizing in the ZrSiS-type tetragonal crystal system with space group P 4/nmm. Temperature-dependent magnetic susceptibility measurements revealed long-range antiferromagnetic ordering with two additional magnetic anomalies below N´eel temperature (TN ≈ 8.6 K), corroborated through magnetocaloric and specific heat studies.

View Article and Find Full Text PDF

Permanent Electride Magnets Induced by Quasi-Atomic Non-Nucleus-Bound Electrons.

Adv Mater

January 2025

Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

Article Synopsis
  • Interstitial quasi-atomic electrons (IQEs) significantly influence the magnetism of crystalline electrides, with their own magnetic moments affected by nearby cations.
  • Weak spin-orbit coupling and limited interactions prevent these systems from achieving hard magnetism, presenting a challenge for stronger magnetic properties.
  • However, certain 2D electrides, like [ReC]·2e, exhibit permanent magnetism by creating a ferrimagnetic state and demonstrate high coercivity due to the interaction between Re-spin and IQE-spin lattices.
View Article and Find Full Text PDF
Article Synopsis
  • The study explores the connection between d-wave superconductivity and stripe phases in high-temperature cuprate superconductors, revealing how anisotropic couplings can enhance critical temperatures.
  • Recent advancements in quantum simulators using ultracold atoms allow for the experimentation and observation of these phenomena in real-time at a detailed level.
  • The research presents evidence of stripe formation in a cold-atom Fermi-Hubbard simulator, showing attractive correlations between dopants and suggesting the presence of a precursor to the stripe phase, which involves complex charge and spin ordering.
View Article and Find Full Text PDF

Magnetic phase transition and spin-phonon coupling effect of antiferromagnetic NiO flakes probed by Raman spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China. Electronic address:

Two-dimensional antiferromagnetic materials have attracted wide attention in both performance and application, which are of great significance for spin valves and next-generation magnetic random access memory devices. The spin-phonon coupling effect plays a crucial role in magnon dynamics. However, there is still a lack of research on the spin-phonon coupling effect of two-dimensional antiferromagnetic flakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!