Functional renormalization group approach to the sine-Gordon model.

Phys Rev Lett

Department of Theoretical Physics, University of Debrecen, Debrecen, Hungary.

Published: June 2009

The renormalization group flow is presented for the two-dimensional sine-Gordon model within the framework of the functional renormalization group method by including the wave-function renormalization constant. The Kosterlitz-Thouless-Berezinski type phase structure is recovered as the interpolating scaling law between two competing IR attractive area of the global renormalization group flow.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.241603DOI Listing

Publication Analysis

Top Keywords

renormalization group
16
functional renormalization
8
sine-gordon model
8
group flow
8
group
4
group approach
4
approach sine-gordon
4
renormalization
4
model renormalization
4
flow presented
4

Similar Publications

Quantum Dynamics Simulations of Exciton Polariton Transport.

Nano Lett

January 2025

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

Recent experiments have shown that exciton transport can be significantly enhanced through hybridization with confined photonic modes in a cavity. The light-matter hybridization generates exciton-polariton (EP) bands, whose group velocity is significantly larger than the excitons. Dissipative mechanisms that affect the constituent states of EPs, such as exciton-phonon coupling and cavity loss, have been observed to reduce the group velocities in experiments.

View Article and Find Full Text PDF

Scaling theory for non-Hermitian topological transitions.

J Phys Condens Matter

January 2025

Theoretical Science, Poornaprajna Institute of Scientific Research, Ranjith Kumar R, Department of Physics, Indian Institute of Technoloby Bombay, Mumbai, 400076, INDIA.

Understanding the critical properties is essential for determining the physical behavior of topological systems. In this context, scaling theories based on the curvature function in momentum space, the renormalization group (RG) method, and the universality of critical exponents have proven effective. In this work, we develop a scaling theory for non-Hermitian topological states of matter.

View Article and Find Full Text PDF

Introduction: Use of electronic nicotine delivery systems (ENDS) may contribute to cigarette use and nicotine addiction by shifting perceptions and norms around tobacco, but little is known about whether or how ENDS use and norms are related to cigarette use and norms, particularly among young adults. This study tested two potential mechanisms by which END use may facilitate cigarette use: decreasing tobacco harm perceptions (desensitization) and increasing favorability of tobacco use (renormalization).

Method: Analyses included data from 2187 young adults in a longitudinal panel who reported any ENDS or combustible cigarette use at ages 21, 23, or 26.

View Article and Find Full Text PDF

Typical path integral Monte Carlo approaches use the primitive approximation to compute the probability density for a given path. In this work, we develop the pair discrete variable representation (pair-DVR) approach to study molecular rotations. The pair propagator, which was initially introduced to study superfluidity in condensed helium, is naturally well-suited for systems interacting with a pairwise potential.

View Article and Find Full Text PDF

Hybridization effects on the magnetic ground state of ruthenium in double perovskite LaZnRuTiO.

J Phys Condens Matter

January 2025

School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.

An exotic quantum mechanical ground state, i.e. the non-magnetic= 0 state, has been predicted for higher transition metalt2g4systems, due to the influence of strong spin-orbit coupling (SOC) or in other words, due to unquenched orbital moment contribution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!