AI Article Synopsis

Article Abstract

We study the conductivity, density of states, and magnetic correlations of a two-dimensional, two-band fermion Hubbard model using determinant quantum Monte Carlo (DQMC) simulations. We show that an orbitally selective Mott transition (OSMT) occurs in which the more weakly interacting band can be metallic despite complete localization of the strongly interacting band. The DQMC method allows us to test the validity of the use of a momentum independent self-energy which has been a central approximation in previous OSMT studies. In addition, we show that long range antiferromagnetic order (LRAFMO) is established in the insulating phase, similar to the single band, square lattice Hubbard Hamiltonian. Because the critical interaction strengths for the onset of insulating behavior are much less than the bandwidth of the itinerant orbital, we suggest that LRAFMO plays a key role in the transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.102.226402DOI Listing

Publication Analysis

Top Keywords

determinant quantum
8
quantum monte
8
monte carlo
8
orbitally selective
8
selective mott
8
mott transition
8
interacting band
8
carlo study
4
study orbitally
4
transition study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!