Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.80.011112 | DOI Listing |
Nanomicro Lett
December 2024
Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.
Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark TiCT MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications.
View Article and Find Full Text PDFPLoS Pathog
December 2024
Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
Human pathogen Streptococcus pneumoniae forms multiple epigenetically and phenotypically distinct intra-populations by invertase PsrA-driven inversions of DNA methyltransferase hsdS genes in the colony opacity-determinant (cod) locus. As manifested by phase switch between opaque and transparent colonies, different genome methylation patterns or epigenomes confer pathogenesis-associated traits, but it is unknown how the pathogen controls the hsdS inversion orientations. Here, we report our finding of the SpxA1-TenA toxin-antitoxin (TA) system that regulates the orientations of hsdS inversions, and thereby bacterial epigenome and associated traits (e.
View Article and Find Full Text PDFAnal Chem
December 2024
Instituto de Biomedicina y Genética Molecular, Unidad de Excelencia, University of Valladolid-CSIC, Valladolid 47003, Spain.
Lipid rafts are liquid-ordered domains in which specific enzymes and receptors are located. These membrane platforms play crucial roles in a variety of signaling pathways. Alterations in the lipid environment, such as those elicited by oxidative stress, can lead to important functional disruptions in membrane proteins.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Kyoto University: Kyoto Daigaku, Graduate School of Engineering, JAPAN.
Controlling trap depth is crucial to improve photocatalytic activity, but designing such crystal structures has been challenging. In this study, we discovered that in 2D materials like BiOCl and Bi4NbO8Cl, composed of interleaved [Bi2O2]2+ and Cl- slabs, the trap depth can be controlled by manipulating the slab stacking structure. In BiOCl, oxygen vacancies (VO) create deep electron traps, while chlorine vacancies (VCl) produce shallow traps.
View Article and Find Full Text PDFClin Chem Lab Med
December 2024
Royal College of Pathologists of Australasia Quality Assurance Program, St Leonards, NSW, Australia.
Objectives: This paper further explores the Sigma Metric (SM) and its application in clinical chemistry. It discusses the SM, assay stability, and control failure relationship.
Content: : SM is not a valid measure of assay stability or the likelihood of failure.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!