A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. | LitMetric

Cobalt core/platinum shell nanoparticles were prepared by the electroless deposition (ED) of Pt on carbon-supported cobalt catalyst (Co/C) and verified by HRTEM images. For a 2.0 wt % Co/C core, the ED technique permitted the Pt loading to be adjusted to obtain a series of bimetallic compositions with varying numbers of monolayers (ML). The tendency for corrosion of Co and the electrochemical (i.e., oxygen reduction reaction (ORR)) activity of the structures were measured. The results from temperature-programmed reduction (TPR) analysis suggest that a single Pt ML coverage is formed at a Pt weight loading between 0.5 and 0.7% on the 2.0% Co/C. HRTEM analysis indicates that the continuity of the Pt shell on the Co core depends on the precursor Co particle size, where "large" Co particles (>10 nm) favor noncontinuous, three-dimensional Pt structures and "small" Co particles (<6 nm) favor layer-by-layer growth. For these larger core-shell particles, Co was observed to quickly corrode in 0.3 M H(2)SO(4). Surface area specific ORR activity, measured by chemisorption techniques, revealed that the Pt-Co/C catalysts performed better than a commercial Pt/C catalyst; however, on a Pt mass basis, only the lower Pt:Co atomic ratio Pt-Co/C catalysts outperformed the Pt/C catalyst.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn900214gDOI Listing

Publication Analysis

Top Keywords

electroless deposition
8
preparation structural
4
structural analysis
4
analysis carbon-supported
4
carbon-supported core/pt
4
core/pt shell
4
shell electrocatalysts
4
electrocatalysts electroless
4
deposition methods
4
methods cobalt
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!