Gas hydrates are becoming an attractive way of storing and transporting large quantities of natural gas, although there has been little effort to understand the preferential occupation of heavy hydrocarbon molecules in hydrate cages. In this work, we present the formation kinetics of mixed hydrate based on a gas uptake measurement during hydrate formation, and how the compositions of the hydrate phase are varied under corresponding formation conditions. We also examine the effect of silica gel pores on the physical properties of mixed hydrate, including thermodynamic equilibrium, formation kinetics, and hydrate compositions. It is expected that the enclathration of ethane and propane is faster than that of methane early stage hydrate formation, and later methane becomes the dominant component to be enclathrated due to depletion of heavy hydrocarbons in the vapor phase. The composition of the hydrate phase seems to be affected by the consumed amount of natural gas, which results in a variation of heating value of retrieved gas from mixed hydrates as a function of formation temperature. 13C NMR experiments were used to measure the distribution of hydrocarbon molecules over the cages of hydrate structure when it forms either from bulk water or water in silica gel pores. We confirm that 70% of large cages of mixed hydrate are occupied by methane molecules when it forms from bulk water; however, only 19% of large cages of mixed hydrate are occupied by methane molecules when it forms from water in silica gel pores. This result indicates that the fractionation of the hydrate phase with heavy hydrocarbon molecules is enhanced in silica gel pores. In addition when heavy hydrocarbon molecules are depleted in the vapor phase during the formation of mixed hydrate, structure I methane hydrate forms instead of structure II mixed hydrate and both structures coexist together, which is also confirmed by 13C NMR spectroscopic analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp904994s | DOI Listing |
In this study, we investigated in detail the regulation mechanism of electron transfer under laser-induced breakdown (LIB) on weak O-D stimulated Raman scattering (SRS) in DMSO-DO solutions. Significantly, the Raman activity of O-D vibrations was greatly enhanced by two orders of magnitude due to electron transfer in DMSO molecules. Density functional theory (DFT) calculations showed that the O-D Raman activity was significantly enhanced in the DMSO-DO dimer compared to the DO dimer.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
Exosomes are natural membrane-enclosed nanovesicles (30-150 nm) involved in cell-cell communication. Recently, they have garnered considerable interest as nanocarriers for the controlled transfer of therapeutic agents to cells. Here, exosomes were derived from bone marrow mesenchymal stem cells using three different isolation methods.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Suzhou Guardex New Material Technology Co., Ltd., Suzhou 210500, China.
Cementitious Capillary Crystallization Waterproofing Material (CCCW), as an efficient self-healing agent, can effectively repair damage in concrete structures, thereby extending their service life. To address the various types of damage encountered in practical engineering applications, this study investigates the impact of different mixing methods for CCCW (including internal mixing, curing, and post-crack repair) on the multi-dimensional self-healing performance of concrete. The self-healing capacity of concrete was evaluated through water pressure damage self-healing tests, freeze-thaw damage self-healing tests, mechanical load damage self-healing tests, and crack damage self-healing tests.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Gansu Industry Technology Center of Transportation Construction Materials Research and Application, Lanzhou Jiaotong University, Lanzhou 730070, China.
In order to study the effect of the crushing process on the fine separation of reclaimed asphalt pavement (RAP) and the mechanical properties of cement-stabilised aggregate mixed with RAP, four crushing processes, namely small mesh hammer crushing, hammer crushing, jaw crushing, and double roller crushing, were used to separate the aggregate from asphalt in RAP materials. The effect of crushing on the grading characteristics and agglomeration condition of RAP material was investigated. RAP cement-stabilised aggregates were prepared and analysed for their mechanical properties and micro-morphology using RAP materials obtained from fine separation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Resources and Construction Engineering, Shihezi University, Shihezi 832000, China.
The collapse of surface goaf beneath highways can result in instability and damage to roadbeds. However, filling the goaf areas with foam concrete can significantly enhance the stability of the roadbeds while considerably reducing the costs of filling materials. This study analyzes the effects on destructive characteristics, mechanical properties, stress-strain curve features, and relevant metrics, while also observing the microstructure of basalt fiber-calcined gangue-silty clay foam concrete (BF-CCG-SCFC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!