Background Aims: Mesenchymal stromal cells (MSC) isolated from bone marrow (BM), adipose tissue and umbilical cord blood can be induced to differentiate into hepatocyte-like cells. MSC can also be isolated from umbilical cord Wharton's jelly (UC MSC), which can be easily obtained. UC MSC are more primitive MSC than those isolated from other tissue sources and do not express the major histocompatibility complex (MHC) class II (HLA-DR) antigens. Previous studies have shown that UC MSC are still viable and not rejected 4 months after transplantation as xenografts, without the need for immune suppression, suggesting that they are a favorable cell source for transplantation.
Methods: UC MSC were induced to differentiate into hepatocyte-like cells by a simple one-step protocol with hepatotic growth factor (HGF) and fibroblast growth factor-4 (FGF-4). Differentiated cells were examined for the expression of hepatocyte-specific markers and hepatocyte functions.
Results: UC MSC were isolated. Flow cytometry analysis showed that they expressed the MSC-specific markers. They differentiated into osteoblast-, adipocyte- and chondrocyte-like cells, showing their multipotent differentiation potential. Immunocytochemistry, real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blot analysis demonstrated that UC MSC expressed the hepatocyte-specific markers albumin (ALB), human alpha-fetoprotein (AFP) and cytokeratin 18 (CK-18) following hepatocyte induction. Periodic acid-Schiff staining showed that differentiated UC MSC could store glycogen, and an low-density lipoprotein (LDL)-uptake assay showed that they could uptake LDL.
Conclusions: This study demonstrates that UC MSC can differentiate into functional hepatocyte-like cells following the induction of HGF and FGF-4. UC MSC can serve as a favorable cell source for tissue engineering in the treatment of liver disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14653240903051533 | DOI Listing |
J Vis Exp
December 2024
Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, University of Chicago;
Obtaining stable hepatic cells in culture poses a significant challenge for liver studies. Bearing this in mind, an optimized method is depicted utilizing human induced pluripotent stem cells (hiPSCs) to generate 3D cultures of human hepatic organoids (HHOs). The utilization of HHOs offers a valuable approach to understanding liver development, unraveling liver diseases, conducting high-throughput studies for drug development, and exploring the potential for liver transplantation.
View Article and Find Full Text PDFRes Sq
December 2024
Nephrogenetics unit, Institute of Human Genetics, University Hospital Heidelberg, Heidelberg, Germany.
Similar to the mammalian hepatocytes, oenocytes accumulate fat during fasting, but it is unclear how they communicate with the fat body, the major lipid source. Using a modified protocol for prolonged starvation, we show that knockdown (KD) of the sole delta 9 desaturase, Desat1 (SCD in mammals), specifically in oenocytes leads to more saturated lipids in the hemolymph and reduced triacylglycerol (TAG) storage in the fat body. Additionally, oenocytes with KD exhibited an accumulation of lipoproteins and actin filaments at the cortex, which decreased lipoproteins in the hemolymph.
View Article and Find Full Text PDFbioRxiv
December 2024
Molecular Cardiovascular Biology, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
Elevated cholesterol poses a significant cardiovascular risk, particularly in older women. The glucocorticoid receptor (GR), a crucial nuclear transcription factor that regulates the metabolism of virtually all major nutrients, harbors a still undefined role in cholesterol regulation. Here, we report that a coding single nucleotide polymorphism (SNP) in the gene encoding the GR, , associated with increased cholesterol levels in women according to UK Biobank and All Of Us datasets.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
The differentiation of mesenchymal stem cells (MSCs) into hepatocyte-like cells (HLCs) is considered one of the most promising strategies for alternative hepatocyte transplantation to treat end-stage liver disease. To advance this method, it is crucial to gain a deeper understanding of the mechanisms governing hepatogenic differentiation. The study demonstrated that suppression of the intracellular domain release of the Notch pathway receptor via the γ-secretase inhibitor N-[(3, 5-difluorophenyl)acetyl]-L-alanyl-2-phenylglycine-1, 1-dimethylethyl ester (DAPT) significantly promotes the expression of hepatocyte-related genes and proteins in HLCs.
View Article and Find Full Text PDFHepatol Commun
December 2024
CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, P.R. China.
Background: Metabolic-associated steatohepatitis (MASH) is one of the most prevalent liver diseases worldwide, with a global prevalence estimated between 3% and 5%, posing a significant health burden. Human liver organoids (HLOs) have previously been generated to model steatohepatitis, offering a potential cellular disease model for studying MASH. However, the current HLO model lacks detailed molecular characterizations and requires further improvement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!