Long interspersed element 1 (LINE-1 or L1) retrotransposons have markedly affected the human genome. L1s must retrotranspose in the germ line or during early development to ensure their evolutionary success, yet the extent to which this process affects somatic cells is poorly understood. We previously demonstrated that engineered human L1s can retrotranspose in adult rat hippocampus progenitor cells in vitro and in the mouse brain in vivo. Here we demonstrate that neural progenitor cells isolated from human fetal brain and derived from human embryonic stem cells support the retrotransposition of engineered human L1s in vitro. Furthermore, we developed a quantitative multiplex polymerase chain reaction that detected an increase in the copy number of endogenous L1s in the hippocampus, and in several regions of adult human brains, when compared to the copy number of endogenous L1s in heart or liver genomic DNAs from the same donor. These data suggest that de novo L1 retrotransposition events may occur in the human brain and, in principle, have the potential to contribute to individual somatic mosaicism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909034 | PMC |
http://dx.doi.org/10.1038/nature08248 | DOI Listing |
J Reprod Immunol
January 2025
Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran. Electronic address:
To further evaluate the effects of lymphocyte immunotherapy (LIT) for the treatment of RPL patients this study aimed to utilize this type of treatment in RPL patients with positive antinuclear antibodies (ANA) in comparison to ANA-negative RPL women. To this aim, 84 ANA-positive, 114 ANA negative, and 50 healthy pregnant women were recruited. To examine the frequency of cells before and after LIT, flowcytometry technique was employed.
View Article and Find Full Text PDFBiomacromolecules
January 2025
State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, P. R. China.
Silk fibroin (SF) hydrogels are widely used in three-dimensional (3D) cell culture and tissue repair. Despite their importance, few studies have focused on regulating their degradation and further revealing the effects of the degradation process on encapsulated cell behaviors. Herein, SF hydrogels with equivalent initial properties and different degradation rates were prepared by adjusting the ratios between the hydrogel-encapsulated normal SF microspheres (MS) and enzyme-loaded SF microspheres (MS).
View Article and Find Full Text PDFCan J Physiol Pharmacol
January 2025
Dalhousie University, Department of Physiology and Biophysics, Halifax, Canada;
A growing body of evidence suggest that the stem cell antigen-1 expressing (Sca-1) cells in the heart may be the cardiac endothelial stem/progenitor cells. Their endothelial cell (EC) functions, and their role in RV physiology and pathophysiology of right heart failure (RHF) remains poorly defined. This study investigated EC characteristics of rat cardiac Sca-1 cells, assessed spatial distribution and studied changes in Sca1 cells during RV remodelling in monocrotaline (MCT) model of pulmonary hypertension and RV remodeling.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.
Birth is one of the most important life events for animals. However, its significance in the developmental process is not fully understood. Here, we found that birth-induced alteration of glutamine metabolism in radial glia (RG), the embryonic neural stem cells (NSCs), is required for the acquisition of quiescence and long-term maintenance of postnatal NSCs.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
Exogenous neural stem cells (NSCs) have great potential to reconstitute damage spinal neural circuitry. However, regulating the metabolic reprogramming of NSCs for reliable nerve regeneration has been challenging. This report discusses the biomimetic dextral hydrogel (DH) with right-handed nanofibers that specifically reprograms the lipid metabolism of NSCs, promoting their neural differentiation and rapid regeneration of damaged axons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!