Phrenic motoneuron discharge patterns during hypoxia-induced short-term potentiation in rats.

J Neurophysiol

Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA.

Published: October 2009

Hypoxia-induced short-term potentiation (STP) of respiratory motor output is manifested by a progressive increase in activity after the acute hypoxic response and a gradual decrease in activity on termination of hypoxia. We hypothesized that STP would be differentially expressed between physiologically defined phrenic motoneurons (PhrMNs). Phrenic nerve "single fiber" recordings were used to characterize PhrMN discharge in anesthetized, vagotomized and ventilated rats. PhrMNs were classified as early (Early-I) or late inspiratory (Late-I) according to burst onset relative to the contralateral phrenic neurogram during normocapnic baseline conditions. During hypoxia (F(I)O(2) = 0.12-0.14, 3 min), both Early-I and Late-I PhrMNs abruptly increased discharge frequency. Both cell types also showed a progressive increase in frequency over the remainder of hypoxia. However, Early-I PhrMNs showed reduced overall discharge duration and total spikes/breath during hypoxia, whereas Late-I PhrMNs maintained constant discharge duration and therefore increased the number of spikes/breath. A population of previously inactive (i.e., silent) PhrMNs was recruited 48 +/- 8 s after hypoxia onset. These PhrMNs had a Late-I onset, and the majority (8/9) ceased bursting promptly on termination of hypoxia. In contrast, both Early-I and Late-I PhrMNs showed post-hypoxia STP as reflected by greater discharge frequencies and spikes/breath during the post-hypoxic period (P < 0.01 vs. baseline). We conclude that the expression of phrenic STP during hypoxia reflects increased activity in previously active Early-I and Late-I PhrMNs and recruitment of silent PhrMNs. post-hypoxia STP primarily reflects persistent increases in the discharge of PhrMNs, which were active before hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775377PMC
http://dx.doi.org/10.1152/jn.00399.2009DOI Listing

Publication Analysis

Top Keywords

late-i phrmns
16
early-i late-i
12
phrmns
11
hypoxia-induced short-term
8
short-term potentiation
8
progressive increase
8
hypoxia
8
termination hypoxia
8
discharge duration
8
silent phrmns
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!