The maxi-anion channel with a large single-channel conductance of >300 pS, and unknown molecular identity, is functionally expressed in a large variety of cell types. The channel is activated by a number of experimental maneuvers such as exposing cells to hypotonic or ischemic stress. The most effective and consistent method of activating it is patch membrane excision. However, the activation mechanism of the maxi-anion channel remains poorly understood at present. In the present study, involvement of phosphorylation/dephosphorylation in excision-induced activation was examined. In mouse mammary fibroblastic C127 cells, activity of the channel was suppressed by intracellular application of Mg-ATP, but not Mg-5'-adenylylimidodiphosphate (AMP-PNP), in a concentration-dependent manner. When a cocktail of broad-spectrum tyrosine phosphatase inhibitors was applied, channel activation was completely abolished, whereas inhibitors of serine/threonine protein phosphatases had no effect. On the other hand, protein tyrosine kinase inhibitors brought the channel out of an inactivated state. In mouse adult skin fibroblasts (MAFs) in primary culture, similar maxi-anion channels were found to be activated on membrane excision, in a manner sensitive to tyrosine phosphatase inhibitors. In MAFs isolated from animals deficient in receptor protein tyrosine phosphatase (RPTP)zeta, activation of the maxi-anion channel was significantly slower and less prominent compared with that observed in wild-type MAFs; however, channel activation was restored by transfection of the RPTPzeta gene. Thus it is concluded that activation of the maxi-anion channel involves protein dephosphorylation mediated by protein tyrosine phosphatases that include RPTPzeta in mouse fibroblasts, but not in C127 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00131.2009 | DOI Listing |
Biol Pharm Bull
June 2024
Laboratory of Environmental Biochemistry, Division of Biological Sciences, Kyoto Pharmaceutical University.
The increasing number of patients with depressive disorder is a serious socioeconomic problem worldwide. Although several therapeutic agents have been developed and used clinically, their effectiveness is insufficient and thus discovery of novel therapeutic targets is desired. Here, focusing on dysregulation of neuronal purinergic signaling in depressive-like behavior, we examined the expression profiles of ATP channels and ectonucleotidases in astrocytes of cerebral cortex and hippocampus of chronic social defeat stress (CSDS)-susceptible BALB/c mice.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
April 2024
Laboratory for Membrane Transport and Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan.
Solute carrier organic anion transporter family member 2A1 (SLCO2A1) is a prostaglandin (PG) transporter and serves as the osmosensitive ATP-permeable maxi-anion channel (Maxi-Cl). Since a heterotetrameric complex of annexin A2 (ANXA2) and S100A10 is obligatory for the channel activity, the present study aimed to determine if they regulate SLCO2A1-mediated PG transport. This study examined PGE uptake and ATP release in and/or knockout (KO) murine breast C127 cells.
View Article and Find Full Text PDFFront Physiol
December 2021
Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
Molecular identification was, at last, successfully accomplished for three types of anion channels that are all implicated in cell volume regulation/dysregulation. LRRC8A LRRC8C/D/E, SLCO2A1, and TMEM206 were shown to be the core or pore-forming molecules of the volume-sensitive outwardly rectifying anion channel (VSOR) also called the volume-regulated anion channel (VRAC), the large-conductance maxi-anion channel (Maxi-Cl), and the acid-sensitive outwardly rectifying anion channel (ASOR) also called the proton-activated anion channel (PAC) in 2014, 2017, and 2019, respectively. More recently in 2020 and 2021, we have identified the S100A10-annexin A2 complex and TRPM7 as the regulatory proteins for Maxi-Cl and VSOR/VRAC, respectively.
View Article and Find Full Text PDFLife (Basel)
May 2021
Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan.
The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large-conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300-400 pS, linear current-to-voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Maxi-Cl channel.
View Article and Find Full Text PDFFront Pharmacol
February 2021
Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
Ectonucleotidases are extracellular enzymes with a pivotal role in inflammation that hydrolyse extracellular purine and pyrimidine nucleotides, e.g., ATP, UTP, ADP, UDP, AMP and NAD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!