In this paper, we first of all review the morphology and structure of the myocardium and discuss the main features of the mechanical response of passive myocardium tissue, which is an orthotropic material. Locally within the architecture of the myocardium three mutually orthogonal directions can be identified, forming planes with distinct material responses. We treat the left ventricular myocardium as a non-homogeneous, thick-walled, nonlinearly elastic and incompressible material and develop a general theoretical framework based on invariants associated with the three directions. Within this framework we review existing constitutive models and then develop a structurally based model that accounts for the muscle fibre direction and the myocyte sheet structure. The model is applied to simple shear and biaxial deformations and a specific form fitted to the existing (and somewhat limited) experimental data, emphasizing the orthotropy and the limitations of biaxial tests. The need for additional data is highlighted. A brief discussion of issues of convexity of the model and related matters concludes the paper.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1098/rsta.2009.0091 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!