Recent studies have shown that integrins act as mechanoreceptors in articular cartilage. In this study, we examined the effect of blocking RGD-dependent integrins on both ECM gene expression and ECM protein synthesis. Chondrocytes were isolated from full-depth porcine articular cartilage and seeded in 3% agarose constructs. These constructs were loaded in compression with 15% strain at 0.33 and 1 Hz for 12h, in the presence or absence of GRGDSP, which blocks RGD-dependent integrin receptors. The levels of mRNA for aggrecan, collagen II and MMP-3 were determined by semi-quantitative PCR at several time points up to 24h post-stimulation. DNA and sGAG content were determined at several time points up to 28 days post-stimulation. At 0.33 Hz, the mRNA levels for aggrecan and MMP-3 were increased after loading, but the mRNA levels for collagen II remained unchanged. Incubation with GRGDSP counteracted these effects. Loading at 1 Hz led to increased mRNA levels for all three molecules directly after loading and these effects were counteracted by incubation with GRGDSP. The constructs that were loaded at 0.33 Hz showed a lower amount of sGAG, compared to the unstrained control. In contrast, loading at 1 Hz caused an increase in sGAG deposition over the culture period. Blocking integrins had only a counteracting effect on the long-term biosynthetic response of constructs that were compressed at 1 Hz. The results confirmed the role of RGD-dependent integrins as mechanotransducers in the regulation of both ECM gene expression and matrix biosynthesis for chondrocytes seeded in agarose under the applied loading regime. Interestingly, this role seems to be dependent on the applied loading frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2009.05.039DOI Listing

Publication Analysis

Top Keywords

rgd-dependent integrins
12
mrna levels
12
integrins mechanotransducers
8
articular cartilage
8
ecm gene
8
gene expression
8
seeded agarose
8
constructs loaded
8
time points
8
incubation grgdsp
8

Similar Publications

The foot-and-mouth disease virus is a highly contagious and economically devastating virus of cloven-hooved animals, including cattle, buffalo, sheep, and goats, causing reduced animal productivity and posing international trade restrictions. For decades, chemically inactivated vaccines have been serving as the most effective strategy for the management of foot-and-mouth disease. Inactivated vaccines are commercially produced in cell culture systems, which require successful propagation and adaptation of field isolates, demanding a high cost and laborious time.

View Article and Find Full Text PDF

Platelet αIIbβ3 integrin binds to SARS-CoV-2 spike protein of alpha strain but not wild type and omicron strains.

Biochem Biophys Res Commun

May 2023

Department of Immunobiology, Institute of Development Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan. Electronic address:

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 causes a pandemic infectious disease, Coronavirus disease 2019 (COVID-19). It causes respiratory infection. Then, it progresses into a systemic infection by involving other organs.

View Article and Find Full Text PDF

Legumain Functions as a Transient TrkB Sheddase.

Int J Mol Sci

March 2023

Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunner Str. 34, A-5020 Salzburg, Austria.

While primarily found in endo-lysosomal compartments, the cysteine protease legumain can also translocate to the cell surface if stabilized by the interaction with the RGD-dependent integrin receptor αVβ3. Previously, it has been shown that legumain expression is inversely related to BDNF-TrkB activity. Here we show that legumain can conversely act on TrkB-BDNF by processing the C-terminal linker region of the TrkB ectodomain in vitro.

View Article and Find Full Text PDF

Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist.

J Biol Chem

March 2023

Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA. Electronic address:

Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin.

View Article and Find Full Text PDF

Integrin Alpha v Beta 6 (αvβ6) and Its Implications in Cancer Treatment.

Int J Mol Sci

October 2022

Research and Development Department, Pure Biologics Ltd., 54-427 Wroclaw, Poland.

Integrins are necessary for cell adhesion, migration, and positioning. Essential for inducing signalling events for cell survival, proliferation, and differentiation, they also trigger a variety of signal transduction pathways involved in mediating invasion, metastasis, and squamous-cell carcinoma. Several recent studies have demonstrated that the up- and down-regulation of the expression of αv and other integrins can be a potent marker of malignant diseases and patient prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!