Background: Influenza virus is a cause of substantial annual morbidity and mortality worldwide. The potential emergence of a new pandemic strain (eg, avian influenza virus) is a major concern. Currently available vaccines and anti-influenza drugs have limited effectiveness for influenza virus infections, especially for new pandemic strains. Therefore, there is an acute need to develop alternative strategies for influenza therapy. gammadelta T cells have potent antiviral activities against different viruses, but no data are available concerning their antiviral activity against influenza viruses.
Methods: In this study, we used virus-infected primary human monocyte-derived macrophages (MDMs) to examine the antiviral activity of phosphoantigen isopentenyl pyrophosphate (IPP)-expanded human Vgamma9Vdelta2 T cells against influenza viruses.
Results: Vgamma9Vdelta2 T cells were selectively activated and expanded by IPP from peripheral blood mononuclear cells. IPP-expanded Vgamma9Vdelta2 T cells efficiently killed MDMs infected with human (H1N1) or avian (H9N2 or H5N1) influenza virus and significantly inhibited viral replication. The cytotoxicity of Vgamma9Vdelta2 T cells against influenza virus-infected MDMs was dependent on NKG2D activation and was mediated by Fas-Fas ligand and perforin-granzyme B pathways.
Conclusion: Our findings suggest a potentially novel therapeutic approach to seasonal, zoonotic avian, and pandemic influenza-the use of phosphoantigens to activate gammadelta T cells against influenza virus infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110194 | PMC |
http://dx.doi.org/10.1086/605413 | DOI Listing |
Nat Immunol
January 2025
Department of Medicine, Department of Pathology, Department of Microbiology & Immunology, McGill University Health Centre, McGill International TB Centre, Meakins Christie Laboratories, McGill University, Montréal, Québec, Canada.
Disease tolerance is an evolutionarily conserved host defense strategy that preserves tissue integrity and physiology without affecting pathogen load. Unlike host resistance, the mechanisms underlying disease tolerance remain poorly understood. In the present study, we investigated whether an adjuvant (β-glucan) can reprogram innate immunity to provide protection against influenza A virus (IAV) infection.
View Article and Find Full Text PDFArch Virol
January 2025
National Institute of Animal Health, National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki, 305-0856, Japan.
Migratory water birds are considered to be carriers of high pathogenicity avian influenza viruses (HPAIVs). In Japan, mallards are often observed during winter, and HPAIV-infected mallards often shed viruses asymptomatically. In this study, we focused on mallards as potential carriers of HPAIVs and investigated whether individual wild mallards are repeatedly infected with HPAIVs and act as HPAIV carriers multiple times within a season.
View Article and Find Full Text PDFEur Respir Rev
January 2025
Transplant Immunology Unit, National Center of Microbiology, Instituto de Salud Carlos III, Madrid Spain
Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.
View Article and Find Full Text PDFPoult Sci
December 2024
Department of Poultry Science, College of Agriculture, Tarbiat Modares University, Tehran, Iran 14115336.
This study was conducted to evaluate the effects of E.coli Nissle 1917 (EcN) on immune responses, blood parameters, oxidative stress, egg quality, and performance of laying Japanese quail. A total of one-hundred day-old quail chicks were assigned to 1 of 4 treatments based on probiotic concentration: 1 (0 CFU/mL; control), 2 (10 CFU/mL), 3 (10 CFU/mL), and 4 (10 CFU/mL).
View Article and Find Full Text PDFJ Neurol Sci
January 2025
Department of Pediatrics, Kobe University Graduate School of Medicine, Hyogo, Japan.
Background: Acute encephalopathy is a severe condition predominantly affecting children with viral infections. The purpose of this study was to elucidate the epidemiology, treatment, and management of acute encephalopathy. The study also aimed to understand how the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has affected epidemiological trends.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!