Photothermal radiometry has been widely used to measure the thermal diffusivity of bulk materials. In the case of thin plates and filaments, a one-dimensional heat propagation model including heat losses has been developed, predicting that the thermal diffusivity can be obtained by recording both the surface temperature amplitude and phase profile slopes ("slope method"). However, this method has given highly overestimated values of the thermal diffusivity of poor-conducting films and filaments. In this paper we analyze the effect of the experimental factors affecting the thermal diffusivity measurements of thin plates and filaments using infrared thermography, in order to establish the experimental conditions needed to obtain accurate and reliable values of the diffusivity of any kind of material using the slope method. We present the calculations of the surface temperature of thin isotropic and anisotropic plates heated by a modulated and tightly focused laser beam, showing that the slope method is also valid for this kind of pointlike heating. Special attention is paid to the effect of surface heat losses (convective and radiative) on the diffusivity measurements of small-dimension and poor-conducting materials. Lock-in thermography measurements performed in the best experimental conditions on a wide set of samples of different thermal properties (thin isotropic and anisotropic plates and filaments) confirm the validity of the slope method to measure accurately the thermal diffusivity of samples of these shapes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3176467 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-700 032, West Bengal, India.
This study presents the synthesis of a Cd(II) based hydrophobic three dimensional crystalline network material (CNM), [Cd(L)(LH)(bpe)], {L = {4,4'-(hexafluroisopropylidine)bis(benzoate)} and 1,2-di(4-pyridyl) ethylene (bpe)}, 1(Cd), by employing the slow-diffusion method. The three-dimensional structure of 1(Cd) was determined by single crystal X-ray diffraction and characterized by powder X-ray diffraction (PXRD), FT-IR spectroscopy and thermogravimetric analysis (TGA). Subsequently, post-synthetic modification of 1(Cd) with Cu(II) at room temperature led to the formation of isostructural 1(Cu) with partial substitution.
View Article and Find Full Text PDFNat Commun
January 2025
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, P. R. China.
With the rapid development of graphene industry, low-cost sustainable synthesis of monolayer graphene oxide (GO) has become more and more important for many applications such as water desalination, thermal management, energy storage and functional composites. Compared to the conventional chemical oxidation methods, water electrolytic oxidation of graphite-intercalation-compound (GIC) shows significant advantages in environmental-friendliness, safety and efficiency, but suffers from non-uniform oxidation, typically ~50 wt.% yield with ~50% monolayers.
View Article and Find Full Text PDFLayered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8904, Tokyo, Japan; Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, 153-8505, Tokyo, Japan. Electronic address:
Phase separation, a fundamental phenomenon in both natural and industrial settings, involves the coarsening of domains over time t to reduce interfacial energy. While well-understood for simple viscous liquid mixtures, the physical laws governing coarsening dynamics in complex fluids, such as colloidal suspensions, remain unclear. Here, we investigate colloidal phase separation through particle-based simulations with and without hydrodynamic interactions (HIs).
View Article and Find Full Text PDFNano Lett
January 2025
University Paris-Saclay, CNRS, Laboratoire de Physique des Solides, Orsay 91405, France.
Thermal transport in nanostructures plays a critical role in modern technologies. As devices shrink, techniques that can measure thermal properties at nanometer and nanosecond scales are increasingly needed to capture transient, out-of-equilibrium phenomena. We present a novel pump-probe photon-electron method within a scanning transmission electron microscope (STEM) to map temperature dynamics with unprecedented spatial and temporal resolutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!