Quantum wave packet optimal control simulations with intense laser pulses have been carried out for studying molecular isomerization dynamics of a one-dimensional (1D) reaction-path model involving a dominant competing dissociation channel. The 1D intrinsic reaction coordinate model mimics the ozone open --> cyclic ring isomerization along the minimum energy path that successively connects the ozone cyclic ring minimum, the transition state (TS), the open (global) minimum, and the dissociative O(2) + O asymptote on the O(3) ground-state (1)A(') potential energy surface. Energetically, the cyclic ring isomer, the TS barrier, and the O(2) + O dissociation channel lie at approximately 0.05, approximately 0.086, and approximately 0.037 hartree above the open isomer, respectively. The molecular orientation of the modeled ozone is held constant with respect to the laser-field polarization and several optimal fields are found that all produce nearly perfect isomerization. The optimal control fields are characterized by distinctive high temporal peaks as well as low frequency components, thereby enabling abrupt transfer of the time-dependent wave packet over the TS from the open minimum to the targeted ring minimum. The quick transition of the ozone wave packet avoids detrimental leakage into the competing O(2) + O channel. It is possible to obtain weaker optimal laser fields, resulting in slower transfer of the wave packets over the TS, when a reduced level of isomerization is satisfactory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3185565 | DOI Listing |
PLoS One
January 2025
Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
The ongoing increase in the prevalence and mutation rate of the influenza virus remains a critical global health issue. A promising strategy for antiviral drug development involves targeting the RNA-dependent RNA polymerase, specifically the PB2-cap binding domain of Influenza A H5N1. This study employs an in-silico approach to inhibit this domain, crucial for viral replication, using potential inhibitors derived from marine bacterial compounds.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mathematics, College of Natural and Computational Science, Debre Berhan University, Debre Berhan, Adis Ababa, Ethiopia.
Tuberculosis (TB) is one of the deadly infectious diseases affecting millions of individuals throughout the world. The main objective of this study is to investigate the impact of media coverage on the transmission dynamics of TB with vaccine and treatment strategy using mathematical model analysis. In the qualitative analysis of the proposed model we proved the existence, uniqueness, positivity, and boundedness of the model solutions, investigated both the disease-free and endemic equilibrium points, computed the basic and effective reproduction numbers using next generation matrix approach, analyzed the stability analysis of the equilibrium points, the backward bifurcation using the Castillo-Chavez and Song theorem and we re-formulated the corresponding optimal control problem and analyzed by applying the Pontryagin's Minimum Principle.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Parul Institute of Applied Sciences, Parul University, Vadodara, India.
Background: Breast cancer remains a significant global health challenge, requiring innovative therapeutic strategies. In silico methods, which leverage computational tools, offer a promising pathway for vaccine development. These methods facilitate antigen identification, epitope prediction, immune response modelling, and vaccine optimization, accelerating the design process.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
School of Computer Science, Qufu Normal University, Rizhao, 276826, China.
Combination therapy, which synergistically enhances treatment efficacy and inhibits disease progression through the combined effects of multiple drugs, has emerged as a mainstream approach for treating complex diseases and alleviating symptoms. However, drug-drug interactions (DDIs) can sometimes lead to adverse reactions, potentially endangering lives. Therefore, developing efficient and accurate DDI prediction methods is crucial for elucidating drug mechanisms and preventing side effects.
View Article and Find Full Text PDFMed Phys
January 2025
Institut Curie, Université PSL, CNRS UMR3347, Inserm U1021, Signalisation Radiobiologie et Cancer, Orsay, France.
Background: Breast cancer is the leading cause of female cancer mortality worldwide, accounting for 1 in 6 cancer deaths. Surgery, radiation, and systemic therapy are the three pillars of breast cancer treatment, with several strategies developed to combine them. The association of preoperative radiotherapy with immunotherapy may improve breast cancer tumor control by exploiting the tumor radio-induced immune priming.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!