Human adipose tissues surgically resected from the subcutaneous abdominal region were enzymatically processed to obtain Human Adipose Stem cells (fibroblast-like adipose tissue-derived stromal cells-ADSC-FL) that were immunophenotypically characterized using a panel of mesenchymal markers by flow cytometry. The formation of new hydroxyapatite crystals in culture dishes, by differentiating cells, further demonstrate the osteogenic potential of purified cells. The aim of this study was to evaluate the osteogenic differentiation potential of ADSC-FL seeded onto a porous beta-tricalcium phosphate (beta-TCP) matrix. ADSC-FL was cultured on the beta-TCP matrix in medium with or without osteogenic differentiation additives. Time-dependent cell differentiation was monitored using osteogenic markers such as alkaline phosphatase (activity assay), osteocalcin and ostopontin (ELISA method) expression. Our results reveal that beta-TCP triggers the differentiation of ADSC-FL toward an osteoblastic phenotype irrespective of whether the cells are grown in a proliferative or a differentiative medium. Hence, a beta-TCP matrix is sufficient to promote osteoblastic differentiation of ADSC-FL. However, in proliferative medium, alkaline phosphatase activity was detected at lower level respect to differentiative medium and osteocalcin and osteopontin showed an expression delay in cells cultured in proliferative medium respect to differentiative one. Moreover, we observed an increase in FAK phosphorylation at level of tyrosine residue in position 397 (Western-blot) that indicates a good cell adhesion to beta-TCP scaffold. In conclusion, our paper demonstrates that a three-dimensional beta-TCP scaffold in vitro triggers on its own the differentiation of ADSC-FL toward an osteoblastic phenotype without the need to use differentiative media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-009-3840-z | DOI Listing |
Mol Biol Rep
January 2025
Institute of Health Sciences, Department of Medical and Surgical Research, Hacettepe University, Ankara, Turkey.
Background: La-related protein 7 (LARP7) is a key regulator of RNA metabolism and is thought to play a role in various cellular processes. LARP7 gene autosomal recessive mutations are the cause of Alazami syndrome, which presents with skeletal abnormalities, intellectual disabilities, and facial dysmorphisms. This study aimed to determine the role of LARP7 in modulating gene expression dynamics during osteogenesis.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Spine, Orthopaedic Center, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China.
Osteogenic differentiation of bone marrow stem cells (BMSCs) is essential for bone tissue regeneration and repair. However, this process is often hindered by an unstable differentiation influenced by local microenvironmental factors. While small extracellular vesicles (sEVs) derived from osteogenically induced adipose mesenchymal stem cells (ADSCs) reportedly can promote osteogenic differentiation of BMSCs, the underlying molecular mechanisms remain incompletely understood.
View Article and Find Full Text PDFJ Adv Prosthodont
December 2024
Department of Prosthodontics, Dental Research Institute, Dental and Life Sciences Institute, Education and Research Team for Life Science on Dentistry, School of Dentistry, Pusan National University, Yangsan, Republic of Korea.
Purpose: This pilot study investigated the effect of surface roughness on osseointegration by comparing two types of commercial SLA-treated dental implants with different surface roughness levels: moderately rough (S = 1 - 2 µm) and rough surfaces (S > 2 µm).
Materials And Methods: Two implant groups were studied: TS (rough surface) and ADD (moderately rough surface) groups. Surface characteristics were analyzed using optical profilometry and SEM.
Int J Nanomedicine
January 2025
Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece.
Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).
Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.
J Cell Sci
January 2025
Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
The GLI1/GLI2/GLI3 transcription factors mediate Hedgehog (Hh) signaling, which is crucial for bone development. During intramembranous ossification, mesenchymal stem cells (MSCs) are directly differentiated into osteoblasts. Under basal and Hh pathway-stimulated conditions, primary cilia play essential roles in proteolytic processing of GLI3 to its repressor form (GLI3R), and in activation of GLI2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!