Solvents intended for the separation of trivalent actinides from trivalent lanthanides in spent nuclear fuel have been irradiated with gamma-radiation. The solvents initially contained 0.005 M C5-BTBP dissolved in either hexanol or cyclohexanone and they were exposed to doses up to 20 kGy. Identification of degradation products was done using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). Structures were suggested for a number of degradation products and the relative intensity of the peaks in the MS spectra was estimated. It was clear that the content of the original molecule, C5-BTBP, decreased with dose, while the content of the various degradation products increased. It was also shown that both the choice of diluent and the dose rate (Gy/h) affect the amount of degradation products formed. A degradation scheme was proposed for the radiolytic degradation of C5-BTBP.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b907084bDOI Listing

Publication Analysis

Top Keywords

degradation products
20
identification degradation
8
dose rate
8
degradation
7
products
5
radiolysis solvents
4
c5-btbp
4
solvents c5-btbp
4
c5-btbp identification
4
products dependence
4

Similar Publications

In-stent restenosis (ISR) following interventional therapy is a fatal clinical complication. Current evidence indicates that neointimal hyperplasia driven by uncontrolled proliferation of vascular smooth muscle cells (VSMC) is a major cause of restenosis. This implies that inhibiting VSMC proliferation may be an attractive approach for preventing in-stent restenosis.

View Article and Find Full Text PDF

Plants and microorganisms coexist within complex ecosystems, significantly influencing agricultural productivity. Depending on the interaction between the plant and microbes, this interaction can either help or harm plant health. Microbes interact with plants by secreting proteins that influence plant cells, producing bioactive compounds like antibiotics or toxins, and releasing molecules such as N-acyl homoserine lactones to coordinate their behaviour.

View Article and Find Full Text PDF

Synthetic biology meets Aspergillus: engineering strategies for next-generation organic acid production.

World J Microbiol Biotechnol

January 2025

School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210023, People's Republic of China.

Organic acids constitute a vital category of chemical raw materials. They have extensive applications in industries such as polymers, food, and pharmaceuticals. Currently, industrial production predominantly relies on microbial fermentation.

View Article and Find Full Text PDF

Sebaceous free fatty acids are metabolized by multiple skin microbes into bioactive lipid mediators termed oxylipins. This study investigated correlations between skin oxylipins and microbes on the superficial skin of pre-pubescent children (N = 36) and adults (N = 100), including pre- (N = 25) and post-menopausal females (N = 25). Lipidomics and metagenomics revealed that Malassezia restricta positively correlated with the oxylipin 9,10-DiHOME on adult skin and negatively correlated with its precursor, 9,10-EpOME, on pre-pubescent skin.

View Article and Find Full Text PDF

Functional resting state connectivity is differentially associated with IL-6 and TNF-α in depression and in healthy controls.

Sci Rep

January 2025

Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.

Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!