Near-infrared (NIR) fluorescence has the potential to provide surgeons with real-time intraoperative image-guidance. Increasing the signal-to-background ratio of fluorescent agents involves delivering a controllable excitation fluence rate of proper wavelength and/or using complementary imaging techniques such as FLIM. In this study we describe a low-cost linear driver circuit capable of driving Light Emitting Diodes (LEDs) from DC to 35 MHz, at high power, and which permit fluorescence CW and lifetime measurements. The electronic circuit Gerber files described in this article and the list of components are available online at www.frangionilab.org.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719859 | PMC |
http://dx.doi.org/10.1117/12.779196 | DOI Listing |
J Med Syst
January 2025
Department of Neurosurgery, University Medical Centre Utrecht, Utrecht, The Netherlands.
This study aimed to develop and validate a cost-effective, customizable patient-specific phantom for simulating external ventricular drain placement, combining image segmentation, 3-D printing and molding techniques. Two variations of the phantom were created based on patient MRI data, integrating a realistic skin layer with anatomical landmarks, a 3-D printed skull, an agarose polysaccharide gel brain, and a ventricular cavity. To validate the phantom, 15 neurosurgeons, residents, and physician assistants performed 30 EVD placements.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Nutrition and Physical Activity Research (LABINAF), Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile.
Cardiorespiratory fitness is the most important variable related to health and a strong predictor of mortality. However, it is rarely used in clinics due to costs, specialized equipment, space needs, and the requirements of expert staff such as an exercise physiologist, physician, or other health professional. This work aims to validate and test the reliability of a submaximal step test to estimate VOmax of 8-to 16-year-old pediatric populations as a simple and low-cost tool for clinical practice.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.
View Article and Find Full Text PDFJ Chem Phys
January 2025
College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China.
The electrochemical property of Mo2C nanoparticles (NPs) depends on the structure and crystal planes. Herein, Mo2C nanoparticles were prepared and dispersed on carbon nanosheets by the construction of a biomass-derived carbon precursor, and the exposed dual crystal planes were also controlled by optimal conditions. The structure, compositions, and morphology of the carbon-based Mo2C were characterized, and the Mo2C NPs were well dispersed on the carbon nanosheets.
View Article and Find Full Text PDFFood Chem
December 2024
College of Chemistry and Life Sciences, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China. Electronic address:
A novel electrochemical sensor for detecting heavy metal ions in seafood was developed to address food safety concerns. The sensor integrates graphene oxide into NH-UiO-66 loaded nanofiber carbon aerogel, enhanced its three-dimensional conductive network and effective active surface area (0.34 cm), which improved ion enrichment and oxidation-reduction reaction rates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!