In Part I of this study [1], good agreement between experimental measurements and results from Monte Carlo simulations were obtained for the spatial intensity distribution of a laser beam propagating within a turbid environment. In this second part, the validated Monte Carlo model is used to investigate spatial and temporal effects from distinct scattering orders on image formation. The contribution of ballistic photons and the first twelve scattering orders are analyzed individually by filtering the appropriate data from simulation results. Side-scattering and forward-scattering detection geometries are investigated and compared. We demonstrate that the distribution of positions for the final scattering events is independent of particle concentration when considering a given scattering order in forward detection. From this observation, it follows that the normalized intensity distribution of each order, in both space and time, is independent of the number density of particles. As a result, the amount of transmitted information is constant for a given scattering order and is directly related to the phase function in association with the detection acceptance angle. Finally, a contrast analysis is performed in order to quantify this information at the image plane.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.013792DOI Listing

Publication Analysis

Top Keywords

scattering orders
12
monte carlo
12
spatial temporal
8
intensity distribution
8
scattering order
8
scattering
7
laser light
4
light scattering
4
scattering turbid
4
turbid media
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!