Enhanced laser action of Perylene-Red doped polymeric materials.

Opt Express

Instituto de Química-Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.

Published: July 2009

The laser action of Perylene-Red doped in linear, crosslinked, fluorinated and sililated polymeric materials is reported. The purity of dye was found to be a key factor to enhance its solid-state laser behaviour. The samples were transversely pumped at 532 nm, with 5.5 mJ/pulse and 10 Hz repetition rate. Perylene-Red doped copolymers of methyl methacrylate with a 10 vol% proportion of 2,2,2-trifluoroethyl-methacrylate exhibited a lasing efficiency of 26% with a high photostability since the dye laser output remained at the same level after 100,000 pump pulses in the same position of the sample. This lasing behaviour is, to the best of our knowledge, the highest achieved to date for organic, inorganic, and hybrid materials doped with Perylene-Red.

Download full-text PDF

Source
http://dx.doi.org/10.1364/oe.17.012777DOI Listing

Publication Analysis

Top Keywords

perylene-red doped
12
laser action
8
action perylene-red
8
polymeric materials
8
enhanced laser
4
perylene-red
4
doped
4
doped polymeric
4
materials laser
4
doped linear
4

Similar Publications

Revising exciton diffusion lengths in polymer dot photocatalysts.

Phys Chem Chem Phys

January 2025

Department of Chemistry, Ångström Laboratory, Uppsala University, SE 751 20 Uppsala, Sweden.

Exciton migration in organic polymer dots (Pdots) is crucial for optimizing photocatalytic reactions at the particle surface, such as hydrogen evolution and carbon dioxide reduction. Despite the use of Pdots in photocatalysis, there is still a need for better understanding of exciton diffusion within these systems. This study investigates the exciton diffusion in PFBT Pdots stabilized with different weight percentages of the co-polymer surfactant PS-PEG-COOH and doped with perylene red as an internal quencher.

View Article and Find Full Text PDF

Organic dopant cyclization and significantly improved RTP properties.

Chem Sci

December 2024

Key Laboratory of Rubber-plastics of Ministry of Education/Shandong Provincial, Key Laboratory of Rubber-plastics, School of Polymer Science & Engineering, Qingdao University of Science & Technology Qingdao China

The internal rotation of triplet-generating molecules is detrimental to room temperature phosphorescence (RTP) radiation, and this rotation is usually mitigated by doping into rigid microenvironments. The chemical locking of internal rotation units in advance should be an effective strategy but is rarely studied in comparison. Herein, a triplet-generating molecule with two rotatable phenyls (DIA) was designed, synthesized, and then cyclized using two types of bonding bridges.

View Article and Find Full Text PDF

Luminescent solar concentrators (LSCs) utilizing stimulated emission by a seed laser are a promising approach to overcome the limitations of conventional LSCs, with a significant reduction of the photovoltaic material. In our previous work, we demonstrated the principle of a stimulated LSC (s-LSC) and correspondingly developed a model for quantifying the output power of such a system, taking into account different important physical parameters. The model suggested Perylene Red (PR) dye as a potential candidate for s-LSCs.

View Article and Find Full Text PDF

The optical gain is measured in Perylene Red (PR)-doped polymethyl methacrylate (PMMA) slabs for copropagating and transverse pumping configurations based on a single-pass pump-probe method where a small signal is used as a probe beam. The gain is characterized in terms of the stimulated gain coefficient (g(S)) for both pump configurations. This material property determines the strength of pump absorption and coupling to the probe signal beam through stimulated emission.

View Article and Find Full Text PDF

Long distance energy transfer in a polymer matrix doped with a perylene dye.

Phys Chem Chem Phys

February 2011

Institut für Physik, Universität Rostock, Universitätsplatz 3, 18051 Rostock, Germany.

Exciton migration over long distances is a key issue for various applications in organic electronics. We investigate a disordered material system which has the potential for long exciton diffusion lengths in combination with a high versatility. The perylene bisimide dye Perylene Red is incorporated in a polymer matrix with a high concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!